
MIDAS Sound System

API Reference

Petteri Kangaslampi

May 24, 1997

Contents

1 Introduction 1

1.1 About this document . 1

1.2 Document organization . 1

2 Configuration, initialization and control 2

2.1 Constants . 2

2.1.1 MIDASdsoundModes . 3

2.1.2 MIDASfilterModes . 4

2.1.3 MIDASmodes . 5

2.1.4 MIDASoptions . 6

2.2 Data types . 7

2.3 Functions . 8

2.3.1 MIDASclose . 9

2.3.2 MIDASconfig . 10

2.3.3 MIDASdetectSoundCard . 11

2.3.4 MIDASgetDisplayRefreshRate . 13

2.3.5 MIDASinit . 15

2.3.6 MIDASloadConfig . 16

2.3.7 MIDASsaveConfig . 17

2.3.8 MIDASsetOption . 18

2.3.9 MIDASstartup . 19

i

CONTENTS ii

3 System control 20

3.1 Constants . 20

3.2 Data types . 21

3.3 Functions . 22

3.3.1 MIDASallocateChannel . 23

3.3.2 MIDAScloseChannels . 24

3.3.3 MIDASfreeChannel . 25

3.3.4 MIDASgetErrorMessage . 26

3.3.5 MIDASgetLastError . 27

3.3.6 MIDASgetVersionString . 28

3.3.7 MIDASopenChannels . 29

3.3.8 MIDASpoll . 30

3.3.9 MIDASremoveTimerCallbacks . 31

3.3.10 MIDASresume . 32

3.3.11 MIDASsetAmplification . 33

3.3.12 MIDASsetTimerCallbacks . 34

3.3.13 MIDASstartBackgroundPlay . 36

3.3.14 MIDASstopBackgroundPlay . 37

3.3.15 MIDASsuspend . 38

4 Module playback 39

4.1 Constants . 39

4.2 Data types . 40

4.2.1 MIDASinstrumentInfo . 41

4.2.2 MIDASmodule . 42

4.2.3 MIDASmoduleInfo . 43

4.2.4 MIDASmodulePlayHandle . 44

CONTENTS iii

4.2.5 MIDASplayStatus . 45

4.3 Functions . 46

4.3.1 MIDASfadeMusicChannel . 47

4.3.2 MIDASfreeModule . 48

4.3.3 MIDASgetInstrumentInfo . 49

4.3.4 MIDASgetModuleInfo . 50

4.3.5 MIDASgetPlayStatus . 51

4.3.6 MIDASloadModule . 52

4.3.7 MIDASplayModule . 53

4.3.8 MIDASplayModuleSection . 54

4.3.9 MIDASsetMusicSyncCallback . 56

4.3.10 MIDASsetMusicVolume . 57

4.3.11 MIDASsetPosition . 58

4.3.12 MIDASstopModule . 59

5 Sample playback 60

5.1 Constants . 60

5.1.1 MIDASchannels . 61

5.1.2 MIDASloop . 62

5.1.3 MIDASpanning . 63

5.1.4 MIDASsampleTypes . 64

5.2 Data types . 65

5.2.1 MIDASsample . 66

5.2.2 MIDASsamplePlayHandle . 67

5.3 Functions . 68

5.3.1 MIDASallocAutoEffectChannels . 69

5.3.2 MIDASfreeAutoEffectChannels . 70

CONTENTS iv

5.3.3 MIDASfreeSample . 71

5.3.4 MIDASloadRawSample . 72

5.3.5 MIDASloadWaveSample . 73

5.3.6 MIDASplaySample . 74

5.3.7 MIDASsetSamplePanning . 76

5.3.8 MIDASsetSamplePriority . 77

5.3.9 MIDASsetSampleRate . 78

5.3.10 MIDASsetSampleVolume . 79

5.3.11 MIDASstopSample . 80

6 Stream playback 81

6.1 Constants . 81

6.2 Data types . 82

6.2.1 MIDASstreamHandle . 83

6.3 Functions . 84

6.3.1 MIDASfeedStreamData . 85

6.3.2 MIDASgetStreamBytesBuffered . 86

6.3.3 MIDASpauseStream . 87

6.3.4 MIDASplayStreamFile . 88

6.3.5 MIDASplayStreamWaveFile . 90

6.3.6 MIDASplayStreamPolling . 91

6.3.7 MIDASresumeStream . 92

6.3.8 MIDASsetStreamPanning . 93

6.3.9 MIDASsetStreamRate . 94

6.3.10 MIDASsetStreamVolume . 95

6.3.11 MIDASstopStream . 96

Chapter 1

Introduction

1.1 About this document

This document contains a full programmer’s reference for the MIDAS Application Program-
ming interface. It includes complete descriptions of all constants, data structure and functions
available in the API, plus examples on how to use them. It is not intended to be a tutorial on
using MIDAS — for that kind of information see MIDAS Programmer’s Guide.

1.2 Document organization

The document itself is divided into six different chapters, according to different functional
groups. In addition to this introduction, the chapters cover configuration and initialization,
overall system control, module playback, sample playback and stream playback. Each chapter
is further divided into three sections: constants, data types and functions.

1

Chapter 2

Configuration, initialization and control

2.1 Constants

This section describes all constants used in MIDAS initialization and configuration. They are
grouped according to the enum used to define them.

2

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 3

2.1.1 MIDASdsoundModes

enum MIDASdsoundModes

Description

These constants are used to describe different MIDAS DirectSound usage modes. By default
MIDAS does not use DirectSound at all, and DirectSound usage can be enabled by setting
MIDAS OPTION DSOUND MODE. Note that MIDAS OPTION DSOUND HWND needs to
be set when using DirectSound. A complete discussion of using DirectSound with MIDAS is
available at MIDAS Programmer’s Guide.

Values

MIDAS DSOUND DISABLED DirectSound usage is disabled

MIDAS DSOUND STREAM DirectSound is used in stream mode – MIDAS will play to a
DirectSound stream buffer. DirectSound usage is disabled if DirectSound runs in emula-
tion mode.

MIDAS DSOUND PRIMARY DirectSound is used in primary buffer mode if possible – MI-
DAS will play directly to DirectSound primary buffer. If primary buffer is not available
for writing, this mode behaves like MIDAS DSOUND STREAM.

MIDAS DSOUND FORCE STREAM Behaves like MIDAS DSOUND STREAM, except
that DirectSound is used always, even in emulation mode.

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 4

2.1.2 MIDASfilterModes

enum MIDASfilterModes

Description

These constants are used to describe different MIDAS output filter modes. By default, no
output filter is enabled, but most programs can benefit from using a slight output filter (MI-
DAS FILTER LESS), unless all sounds are played exactly at the mixing frequency or an inte-
ger part of it. Programs using low mixing rates, 22kHz or below, might sound better with more
filtering — it is usually a good idea to check the sound quality with different filters, and use the
one that sounds best.

The filter mode can be set by changing the option MIDAS OPTION FILTER MODE with the
function MIDASsetOption.

Values

MIDAS FILTER NONE No filtering

MIDAS FILTER LESS Some filtering

MIDAS FILTER MORE More filtering

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 5

2.1.3 MIDASmodes

enum MIDASmodes

Description

These constants are used to describe different MIDAS output modes. They are used with the
function MIDASsetOption, when changing the setting MIDAS OPTION OUTPUTMODE.

Values

MIDAS MODE 8BIT MONO 8-bit mono output

MIDAS MODE 16BIT MONO 16-bit mono output

MIDAS MODE 8BIT STEREO 8-bit stereo output

MIDAS MODE 16BIT STEREO 16-bit stereo output

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 6

2.1.4 MIDASoptions

enum MIDASoptions

Description

These constants are used with the function MIDASsetOption to change different MIDAS con-
figuration options.

Values

MIDAS OPTION MIXRATE Output mixing rate

MIDAS OPTION OUTPUTMODE Output mode, see enum MIDASmodes

MIDAS OPTION MIXBUFLEN Mixing buffer length, in milliseconds

MIDAS OPTION MIXBUFBLOCKS The number of blocks the buffer should be divided
into

MIDAS OPTION DSOUND MODE DirectSound mode to use, see enum MIDASdsound-
Modes

MIDAS OPTION DSOUND HWND Window handle for DirectSound support. The window
handle is used by DirectSound to determine which window has the focus. The window
handle has to be set when using DirectSound.

MIDAS OPTION DSOUND OBJECT The DirectSound object that should be used. Setting
this option forces DirectSound support on.

MIDAS OPTION DSOUND BUFLEN Output buffer length fot DirectSound, in millisec-
onds. This option is used instead of MIDAS OPTION MIXBUFLEN when using Di-
rectSound without emulation.

MIDAS OPTION FILTER MODE Output filter mode, see enum MIDASfilterModes.

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 7

2.2 Data types

This section describes all data types used in MIDAS initialization and configuration.

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 8

2.3 Functions

This section describes all functions available for MIDAS initialization and configuration.

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 9

2.3.1 MIDASclose

BOOL MIDASclose(void)

Uninitializes MIDAS Sound System.

Input

None.

Description

This function uninitializes all MIDAS Sound System components, deallocates all resources
allocated, and shuts down all MIDAS processing. This function must always be called before
exiting under MS-DOS and is also strongly recommended under other operating systems. After
this function has been called, no MIDAS function may be called unless MIDAS is initialized
again.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASinit

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 10

2.3.2 MIDASconfig

BOOL MIDASconfig(void)

Runs manual MIDAS setup.

Input

None.

Description

This function runs the manual MIDAS MS-DOS setup. It prompts the user for the sound card
to use, its hardware setup, and the desired output mode. The setup entered can be saved do
disk with MIDASsaveConfig, and loaded back with MIDASloadConfig. These functions can be
used to create a simple external setup program, or just save the settings between two runs of
the program. After this function has been called, MIDASsetOption can be used to change the
output mode options, to, for example, force mono output.

This function returns TRUE if the setup was completed successfully, FALSE if not. The setup
can fail for two reasons: either the user aborted it by pressing escape, or an error occured.
As errors during the setup are extremely unlikely, it is safe to simply exit the program if this
function returns FALSE. MIDASgetLastError can be used to check if an error occured — if the
return value is zero, the user just pressed Escape.

This function must be called before MIDASinit, but after MIDASstartup.

Return value

TRUE if successful, FALSE if not (the user pressed escape, or an error occured)

Operating systems

MS-DOS

See also

MIDASsaveConfig, MIDASloadConfig, MIDASsetOption, MIDASinit

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 11

2.3.3 MIDASdetectSoundCard

BOOL MIDASdetectSoundCard(void)

Attempts to detect the sound card to use.

Input

None.

Description

[MS-DOS only]

This function attempts to detect the sound card that should be used. It will set up MIDAS to use
the detected card, and return TRUE if a sound card was found, FALSE if not. If this function
returns FALSE, you should run MIDASconfig to let the user manually select the sound card.
Note that you can use MIDAS even if no sound card has been selected - MIDAS will just not
play sound in that case.

If no sound card has been manually set up, MIDASinit will automatically detect it, or use No
Sound if none is available. Therefore this function does not have to be called if manual setup
will not be used.

Note that, as there is no way to safely autodetect the Windows Sound System cards under MS-
DOS, MIDAS will not attempt to detect them at all. If you do not provide a manual setup
possibility to your program (via MIDASconfig), WSS users will not be able to get any sound.
The computer may also have several sound cards, and the user may wish not to use the one au-
tomatically detected by MIDAS. Therefore it is a very good idea to include an optional manual
sound setup to all programs.

This discussion naturally applies to MS-DOS only, under Win32 and Linux MIDAS uses the
sound card through the system audio devices, and no sound card selection or setup is necessary.

Return value

TRUE if a sound card was detected, FALSE if not.

Operating systems

MS-DOS

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 12

See also

MIDASconfig, MIDASinit

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 13

2.3.4 MIDASgetDisplayRefreshRate

DWORD MIDASgetDisplayRefreshRate(void)

Gets the current display refresh rate.

Input

None.

Description

This function tries to determine the current display refresh rate. It is used with MIDASsetTimer-
Callbacks to set a display-synchronized timer callback. It returns the current display refresh
rate in milliHertz (ie. 1000*Hz, 50Hz becomes 50000, 70Hz 70000 etc), or 0 if it could not
determine the refresh rate. The refresh rate may be unavailable when running under Win95 or
a similar OS, or when the VGA card does return Vertical Retraces correctly (as some SVGA
cards do in SVGA modes). Therefore it is important to check the return value, and substitute
some default value if it is zero.

Unlike most other MIDAS functions, this function must be called before MIDASinit is called,
as the MIDAS timer may interfere with the measurements.

Note that the display refresh rate is display mode specific. Therefore you need to set up the
display mode with which you want to use display-synchronized timer callbacks before calling
this function. Also, if your application uses several display modes, you must get the display
refresh rate for each mode separately, and remove and restart the display-synchronized timer
callbacks at each mode change.

This function is only available in MS-DOS.

Return value

The current display refresh rate, in milliHertz, or 0 if unavailable.

Operating systems

MS-DOS

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 14

See also

MIDASsetTimerCallbacks

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 15

2.3.5 MIDASinit

BOOL MIDASinit(void)

Initializes MIDAS Sound System.

Input

None.

Description

This function initializes all MIDAS Sound System components, and sets up the API. Apart
from configuration functions, this function must be called before any other MIDAS functions
are used.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASsetOption, MIDASclose

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 16

2.3.6 MIDASloadConfig

BOOL MIDASloadConfig(char *fileName)

Load MIDAS setup from disk.

Input

fileName Setup file name

Description

This function loads MIDAS setup from disk. The setup must have been saved with MIDASsave-
Config. MIDASsetOption can be used afterwards to change, for example, the output mode.

This function must be called before MIDASinit, but after MIDASstartup.

Return value

TRUE if successful, FALSE if not.

Operating systems

MS-DOS

See also

MIDASconfig, MIDASsaveConfig

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 17

2.3.7 MIDASsaveConfig

BOOL MIDASsaveConfig(char *fileName)

Saves the MIDAS setup to a file.

Input

fileName Setup file name

Description

This function saves the MIDAS setup entered with MIDASconfig to a file on disk. It can be then
loaded with MIDASloadConfig.

Return value

TRUE if successful, FALSE if not.

Operating systems

MS-DOS

See also

MIDASconfig, MIDASloadConfig

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 18

2.3.8 MIDASsetOption

BOOL MIDASsetOption(int option, DWORD value)

Sets a MIDAS option.

Input

option Option number (see enum MIDASoptions above)

value New value for option

Description

This function sets a value to a MIDAS option. The different number codes for different options
are described above. All MIDAS configuration options must be set with this function before
MIDASinit is called.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASinit

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 19

2.3.9 MIDASstartup

BOOL MIDASstartup(void)

Prepares MIDAS Sound System for initialization and use.

Input

None.

Description

This function sets all MIDAS configuration variables to default values and prepares MIDAS for
use. It must be called before any other MIDAS function, including MIDASinit and MIDASse-
tOption, is called. After this function has been called, MIDASclose can be safely called at any
point and any number of times, regardless of whether MIDAS has been initialized or not. Af-
ter calling this function, you can use MIDASsetOption to change MIDAS configuration before
initializing MIDAS with MIDASinit.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASsetOption, MIDASinit, MIDASclose

Chapter 3

System control

3.1 Constants

This section describes all constants used in MIDAS system control. They are grouped according
to the enum used to define them.

20

CHAPTER 3. SYSTEM CONTROL 21

3.2 Data types

This section describes all data types used in MIDAS system control.

CHAPTER 3. SYSTEM CONTROL 22

3.3 Functions

This section describes all functions available for MIDAS system control. This includes error
handling.

CHAPTER 3. SYSTEM CONTROL 23

3.3.1 MIDASallocateChannel

DWORD MIDASallocateChannel(void)

Allocates a single Sound Device channel.

Input

None.

Description

This function allocates a single Sound Device channel, and returns its number. Sound Device
are used for all sound playback, but most functions take care of allocating and deallocating
channels automatically. If you wish to play a sample on a specific channel, to ensure it won’t be
replaced by other samples, you’ll need to pass MIDASplaySample a specific channel number,
and this function is used to allocate those channels.

Channels allocated with this function need to be deallocated with MIDASfreeChannel. Before
any channels can be allocated, some sound channels need to be opened with MIDASopenChan-
nels.

Return value

Channel number for the allocated channel, or MIDAS ILLEGAL CHANNEL if failed.

Operating systems

All

See also

MIDASopenChannels, MIDASfreeChannel.

CHAPTER 3. SYSTEM CONTROL 24

3.3.2 MIDAScloseChannels

BOOL MIDAScloseChannels(void)

Closes Sound Device channels opened with MIDASopenChannels.

Input

None.

Description

This function closes Sound Device channels that were opened with MIDASopenChannels. Note
that you may not use this function to close channels that were opened by MIDASplayModule
— MIDASstopModule will do that automatically.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASopenChannels, MIDASplayModule, MIDASstopModule

CHAPTER 3. SYSTEM CONTROL 25

3.3.3 MIDASfreeChannel

BOOL MIDASfreeChannel(DWORD channel)

Deallocates a single Sound Device channel.

Input

channel The channel number to deallocate, from MIDASallocateChannel

Description

This function deallocates a single Sound Device channel that has previously been allocated
with MIDASallocateChannel. Any sound playback on the channel should be stopped before
deallocating it.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASallocateChannel

CHAPTER 3. SYSTEM CONTROL 26

3.3.4 MIDASgetErrorMessage

char *MIDASgetErrorMessage(int errorCode)

Gets an error message corresponding to an error code.

Input

errorCode The error code from MIDASgetLastError

Description

This function returns a textual error message corresponding to a MIDAS error code. It can be
used for displaying an error message to the user. Use MIDASgetLastError to determine the error
code.

This function can be called at any point after MIDASstartup has been called.

Return value

Error message string corresponding to the error code.

Operating systems

All

See also

MIDASgetLastError

CHAPTER 3. SYSTEM CONTROL 27

3.3.5 MIDASgetLastError

int MIDASgetLastError(void)

Gets the MIDAS error code for last error.

Input

None.

Description

This function can be used to read the error code for most recent failure. When a MIDAS API
function returns an error condition, this function can be used to determine the actual cause of
the error, and this error can then be reported to the user or ignored, depending on the kind of
response needed. Use MIDASgetErrorMessage to get a textual message corresponding to an
error code.

This function can be called at any point after MIDASstartup has been called.

Return value

MIDAS error code for the most recent error.

Operating systems

All

See also

MIDASgetErrorMessage

CHAPTER 3. SYSTEM CONTROL 28

3.3.6 MIDASgetVersionString

char *MIDASgetVersionString(void)

Gets the current MIDAS version as a string.

Input

None.

Description

This function can be used to determine the MIDAS version being loaded. It returns a text string
description of the version. Version numbers are usually of form “x.y.z”, where “x” is the major
version number, “y” minor version number and “z” patch level. In some occasions, “z” can be
replaced with a textual message such as “rc1” for Release Candidate 1. All MIDAS versions
with the major and minor version numbers equal have a compatible DLL API, and can be used
interchangeably.

Return value

MIDAS Sound System version number as a string.

Operating systems

Win32, Linux

See also

CHAPTER 3. SYSTEM CONTROL 29

3.3.7 MIDASopenChannels

BOOL MIDASopenChannels(int numChans)

Opens Sound Device channels for sound and music output.

Input

numChans Number of channels to open

Description

This function opens a specified number of channels for digital sound and music output. The
channels opened can be used for playing streams, samples and modules.

If this function has not been called before MIDASplayModule is called, MIDASplayModule will
open the channels it needs for module playback. However, if this function has been called, but
the number of available channels is inadequate for the module, MIDASplayModule will return
an error and refuse to play the module.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDAScloseChannels, MIDASplayModule

CHAPTER 3. SYSTEM CONTROL 30

3.3.8 MIDASpoll

BOOL MIDASpoll(void)

Polls the MIDAS sound and music player.

Input

None.

Description

This function can be used to poll MIDAS sound and music player manually. It plays music
forward, mixes sound data, and sends it to output. When using manual polling, make sure
you call MIDASpoll often enough to make sure there are no breaks in sound output — at least
two times during buffer length, preferably four times or more. Under multitasking operating
systems such as Win32 and Linux, this may be difficult, so very short buffer sizes can’t be used
reliably.

Also note that currently this function is not available under MS-DOS. Under MS-DOS,
playback is always done in background using the system timer (IRQ 0).

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

See also

MIDASstartBackgroundPlay, MIDASstopBackgroundPlay

CHAPTER 3. SYSTEM CONTROL 31

3.3.9 MIDASremoveTimerCallbacks

BOOL MIDASremoveTimerCallbacks(void)

Removes the user timer callbacks.

Input

None.

Description

This function removes the user timer callbacks set with MIDASsetTimerCallbacks. The callback
functions will no longer be called. This function may not be called if MIDASsetTimerCallbacks
has not been called before.

It is not necessary to call this function without exiting even if the callbacks have been used
— MIDASclose will remove the callbacks automatically. On the other hand, if the callback
functions or rate are changed with MIDASsetTimerCallbacks, this function must be called to
remove the previous ones first.

Return value

TRUE if successful, FALSE if not.

Operating systems

MS-DOS

See also

MIDASsetTimerCallbacks

CHAPTER 3. SYSTEM CONTROL 32

3.3.10 MIDASresume

BOOL MIDASresume(void)

Resumes MIDAS sound playback.

Input

None.

Description

This function re-allocates the system audio device to MIDAS, and resumes sound playback,
after being suspended with MIDASsuspend. See MIDASsuspend documentation for more infor-
mation about suspending MIDAS.

Note that this function may fail, if another application has captured the sound output device
while MIDAS was suspended.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32

See also

MIDASsuspend

CHAPTER 3. SYSTEM CONTROL 33

3.3.11 MIDASsetAmplification

BOOL MIDASsetAmplification(DWORD amplification)

Sets sound output amplification level.

Input

amplification New output amplification level

Description

This function changes the output amplification level. Amplification can be used to boost the
volume of the music, if the sounds played are unusually quiet, or lower it if the output seems
distorted.. The amplification level is given as a percentage — 100 stands for no amplification,
200 for double volume, 400 for quadruple volue, 50 for half volume etc.

MIDAS has some build-in amplification, but the default amplification is designed for situations
where most channels have data played at moderate volumes (eg. module playback). If a lot
of the channels are empty, or sounds are played at low volumes, adding amplification with this
function can help to get the total sound output at a reasonable level. The amplification set with
this function acts on top of the default MIDAS amplification, so nothing will be overridden.

This function can be called at any point after MIDASstartup.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

CHAPTER 3. SYSTEM CONTROL 34

3.3.12 MIDASsetTimerCallbacks

BOOL MIDASsetTimerCallbacks(DWORD rate, BOOL displaySync,
void (MIDAS_CALL *preVR)(), void (MIDAS_CALL *immVR)(),
void (MIDAS_CALL *inVR)());

Sets the user timer callback functions and their rate.

Input

rate Timer callback rate, in milliHertz (1000*Hz, 100Hz becomes 100000 etc)

displaySync TRUE if the callbacks should be synchronized to display refresh, FALSE if not.

preVR preVR callback function pointer or NULL

immVR immVR callback function pointer or NULL

inVR inVR callback function pointer or NULL

Description

This function sets the user timer callback functions and their call rate. The functions will be
called periodically by the MIDAS timer interrupt, one after another. Any of the callback func-
tion pointers may be set to NULL — the callback is then ignored.

If displaySync is TRUE, the timer system attempts to synchronize the callbacks to the display
refresh. In that case, preVR is called just before the Vertical Retrace starts, immVR immedi-
ately after it has started, and inVR later during retrace. preVR can then be used for changing
the display start address, for example. If display synchronization is used, rate has to be set to
the value returned by MIDASgetDisplayRefreshRate.

If displaySync is FALSE, or the timer system is unable to synchronize to display refresh (run-
ning under Win95, for example), the functions are simply called one after another: first preVR,
then immVR and last inVR. Note that display synchronization is not always possible, and this
may happen even if displaySync is set to 1.

In either case, both the preVR and immVR functions have to be kept as short as possible, to
prevent timing problems. They should not do more than update a few counters, or set a couple
of hardware registers. inVR can take somewhat longer time, and be used for, for example,
setting the VGA palette. It should not take more than one quarter of the time between callbacks
though.

CHAPTER 3. SYSTEM CONTROL 35

The most common use for the timer callback functions is to use them for controlling the pro-
gram speed. There one of the callbacks, usually preVR is simply used for incrementing a
counter. This counter then can be used to determine when to display a new frame of graphics,
for example, or how many frames of movement needs to be skipped to maintain correct speed.

Note that this function may cause a small break to music playback with some sound cards.
Therefore it should not be called more often than necessary. Also, if the application changes
display modes, any display-synchronized timer callbacks must be resetted, and a separate re-
fresh rate must be read for each display mode used.

MIDAS CALL is the calling convention used for the callback functions — cdecl for Watcom C,
empty (default) for DJGPP. As the functions will be called from an interrupt, the module con-
taining the callback functions must be compiled with the “SS==DS” setting disabled (command
line argument “-zu” for Watcom C, default setting for DJGPP).

Return value

TRUE if successful, FALSE if not.

Operating systems

MS-DOS

See also

MIDASremoveTimerCallbacks, MIDASgetDisplayRefreshRate

CHAPTER 3. SYSTEM CONTROL 36

3.3.13 MIDASstartBackgroundPlay

BOOL MIDASstartBackgroundPlay(DWORD pollRate)

Starts playing music and sound in the background.

Input

pollRate Polling rate (number of polls per second), 0 for default

Description

This function starts playing sound and music in the background. pollRate controls the target
polling rate — number of polls per second. Polling might not be done at actually the set rate,
although usually it will be faster. Under Win32 and Linux, a new thread will be created for
playing. Under MS-DOS this function is currently ignored, and background playback
starts immediately when MIDAS is initialized.

Return value

TRUE if successful, FALSE if not.

Operating systems

All, but see MS-DOS note above.

See also

MIDASstopBackgroundPlay, MIDASpoll

CHAPTER 3. SYSTEM CONTROL 37

3.3.14 MIDASstopBackgroundPlay

BOOL MIDASstopBackgroundPlay(void)

Stops playing sound and music in the background.

Input

None.

Description

This function stops music and sound background playback that has been started with MI-
DASstartBackgroundPlay. Under Win32 and Linux, this function also destroys the thread cre-
ated for playback. Under MS-DOS this function is currently ignored, and background
playback starts immediately when MIDAS is initialized.

If background playback has been started with MIDASstartBackgroundPlay, this function bf
must be called before the program exits.

Return value

TRUE if successful, FALSE if not.

Operating systems

All, but see MS-DOS note above.

See also

MIDASstartBackgroundPlay, MIDASpoll

CHAPTER 3. SYSTEM CONTROL 38

3.3.15 MIDASsuspend

BOOL MIDASsuspend(void)

Suspends MIDAS Sound System.

Input

None.

Description

This function suspends all MIDAS Sound System output, and releases the system audio device
to other programs. Playback can be resumed with MIDASresume. Suspending and resuming
MIDAS can be used to change some of the initial configuration options (set with MIDASsetOp-
tion) on the fly. In particular, the DirectSound mode and DirectSound window handle can be
changed while MIDAS is suspended, and the new values take effect when MDIAS is restarted.
Buffer size can also be changed, although this is not recommended. Output mode and mixing
rate cannot be changed without completely uninitializing MIDAS.

While MIDAS is suspended, all MIDAS functions can be called normally — the sound simply
is not played. Also, stream, module and sample playback positions do not change while MIDAS
is suspended.

Note that MIDASsuspend and MIDASresume are only available in Win32 systems at the mo-
ment.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32

See also

MIDASresume

Chapter 4

Module playback

4.1 Constants

This section describes all constants used in MIDAS module playback. They are grouped ac-
cording to the enum used to define them.

39

CHAPTER 4. MODULE PLAYBACK 40

4.2 Data types

This section describes all data types used in MIDAS module playback.

CHAPTER 4. MODULE PLAYBACK 41

4.2.1 MIDASinstrumentInfo

typedef struct
{

char instName[32];
} MIDASinstrumentInfo;

Instrument information structure.

Members

instName Instrument name, an ASCIIZ string

Description

This structure is used with the function MIDASgetInstrumentInfo to query information about an
instrument in a module. MIDASgetInstrumentInfo fills a MIDASinstrumentInfo structure with
the information.

CHAPTER 4. MODULE PLAYBACK 42

4.2.2 MIDASmodule

typedef ... MIDASmodule;

Description

MIDASmodule is a module handle that defines a module that has been loaded into memory.

CHAPTER 4. MODULE PLAYBACK 43

4.2.3 MIDASmoduleInfo

typedef struct
{

char songName[32];
unsigned songLength;
unsigned numPatterns;
unsigned numInstruments;
unsigned numChannels;

} MIDASmoduleInfo;

Module information structure.

Members

songName Module song name, an ASCIIZ string

songLength Module song length in number of positions

numPatterns Number of patterns in module

numInstruments Number of instruments in module

numChannels The number of channels the module uses

Description

This structure is used with the function MIDASgetModuleInfo to query information about an
module. MIDASgetModuleInfo fills a MIDASmoduleInfo structure with the information.

CHAPTER 4. MODULE PLAYBACK 44

4.2.4 MIDASmodulePlayHandle

typedef ... MIDASmodulePlayHandle;

Description

MIDASmodulePlayHandle is a module playback handle that defines a module or module section
that is being played. One module can be played several times simultaneously.

CHAPTER 4. MODULE PLAYBACK 45

4.2.5 MIDASplayStatus

typedef struct
{

unsigned position;
unsigned pattern;
unsigned row;
int syncInfo;
unsigned songLoopCount;

} MIDASplayStatus;

Module status information structure.

Members

position Current playback position number

pattern Current playback pattern number

row Current playback row number

syncInfo Latest synchronization command infobyte, -1 if no synchronization command has
been encountered yet.

songLoopCount Module song loop counter — incremented by 1 every time the song loops
around. Module looping can be detected by checking if this field is nonzero.

Description

This structure is used with the function MIDASgetPlayStatus to query the current module play-
back status. MIDASgetPlayStatus fills a MIDASplayStatus structure with the information.

Some more information about the synchronization commands: In FastTracker 2 and Scream
Tracker 3 modules, the command Wxx is used as a music synchronization command. The in-
fobyte of this command is available as the music synchronization command infobyte above.

CHAPTER 4. MODULE PLAYBACK 46

4.3 Functions

This section describes all functions available for MIDAS module playback.

CHAPTER 4. MODULE PLAYBACK 47

4.3.1 MIDASfadeMusicChannel

BOOL MIDASfadeMusicChannel(MIDASmodulePlayHandle playHandle,
unsigned channel, unsigned fade)

Fades a music channel.

Input

playHandle Module playback handle for the music

channel Module channel number to control

fade Channel fade value: 64 is normal volume, 0 silence

Description

This function is used to control the “fade” of a music channel. Channel fade acts as a channel-
specific master volume: it can be used to quiet down the general volume of the sounds played
on the channel, while any volume changes in the music still take effect.

channel if the module channel number for the sounds to control, not a Sound Device channel
number. Module channels are numbered from zero upwards.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASsetMusicVolume

CHAPTER 4. MODULE PLAYBACK 48

4.3.2 MIDASfreeModule

BOOL MIDASfreeModule(MIDASmodule module)

Deallocates a module.

Input

module Module that should be deallocated

Description

This function deallocates a module loaded with MIDASloadModule. It should be called to free
unused modules from memory, after they are no longer being played, to avoid memory leaks.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASloadModule

CHAPTER 4. MODULE PLAYBACK 49

4.3.3 MIDASgetInstrumentInfo

BOOL MIDASgetInstrumentInfo(MIDASmodule module,
int instNum, MIDASinstrumentInfo *info)

Gets information about an instrument in a module.

Input

module Module handle for the module

instNum Instrument number

info Pointer to an instrument info structure where the information willl be written

Description

This function returns information about an instrument in a module, including the instrument
name. The user needs to pass it a valid pointer to a MIDASinstrumentInfo structure (*info),
where the information will be written. You should ensure that instNum is a valid instrument
number. Instrument numbers start from 0, although trackers traditionally number them from 1,
and you can useMIDASgetModuleInfo to get the number of instruments available in a module.

Return value

TRUE if successful, FALSE if not. The instrument information is written to *info.

Operating systems

All

See also

MIDASplayModule, MIDASgetModuleInfo, MIDASmoduleInfo

CHAPTER 4. MODULE PLAYBACK 50

4.3.4 MIDASgetModuleInfo

BOOL MIDASgetModuleInfo(MIDASmodule module,
MIDASmoduleInfo *info)

Gets information about a module.

Input

module Module handle for the module

info Pointer to a module info structure where the information willl be written

Description

This function returns information about a module, including the module name and the number
of channels used. The user needs to pass it a valid pointer to a MIDASmoduleInfo structure
(*info), where the information will be written.

Return value

TRUE if successful, FALSE if not. The module information is written to *info.

Operating systems

All

See also

MIDASplayModule, MIDASmoduleInfo

CHAPTER 4. MODULE PLAYBACK 51

4.3.5 MIDASgetPlayStatus

BOOL MIDASgetPlayStatus(MIDASplayStatus *status)

Gets module playback status.

Input

status Pointer to playback status structure where the status will be written.

Description

This function reads the current module playback status, and writes it to *status. The user needs
to pass it a valid pointer to a MIDASplayStatus structure, which will be updated.

Return value

TRUE if successful, FALSE if not. The current playback status is written to *status.

Operating systems

All

See also

MIDASplayModule, MIDASplayStatus

CHAPTER 4. MODULE PLAYBACK 52

4.3.6 MIDASloadModule

MIDASmodule MIDASloadModule(char *fileName)

Loads a module file into memory.

Input

fileName Module file name

Description

This function loads a module file into memory. It checks the module format based on the
module file header, and invokes the correct loader to load the module into memory in GMPlayer
internal format. The module can then be played using MIDASplayModule, and deallocated from
memory with MIDASfreeModule.

Return value

Module handle if successful, NULL if not.

Operating systems

All

See also

MIDASplayModule, MIDASfreeModule

CHAPTER 4. MODULE PLAYBACK 53

4.3.7 MIDASplayModule

MIDASmodulePlayHandle MIDASplayModule(MIDASmodule module,
BOOL loopSong)

Starts playing a module.

Input

module Module to be played

loopSong TRUE if the song should be looped, FALSE if not

Description

This functions starts playing a module that has been previously loaded with MIDASloadModule.
If channels have not been previously opened using MIDASopenChannels, this function opens
the channels necessary to play the module. This function plays the complete module — to play
just a section of the song data, use MIDASplayModuleSection.

Note! Currently, when multiple modules or module sections are played simultaneously, all
modules should have the same (BPM) tempo. Otherwise some modules may be played at the
wrong tempo. All modules can have different speed setting though.

Return value

MIDAS module playback handle for the module, or 0 if failed.

Operating systems

All

See also

MIDASloadModule, MIDASstopModule, MIDASplayModuleSection

CHAPTER 4. MODULE PLAYBACK 54

4.3.8 MIDASplayModuleSection

MIDASmodulePlayHandle MIDASplayModuleSection(MIDASmodule module,
unsigned startPos, unsigned endPos, unsigned restartPos,
BOOL loopSong)

Starts playing a module section.

Input

module Module to be played

startPos Start song position for the section to play

endPos End song position for the section to play

restartPos Restart position to use when the section loops

loopSong TRUE if the playback should be looped, FALSE if not

Description

This module starts playing a section of a module that has been previously loaded with MI-
DASloadModule. If channels have not been previously opened using MIDASopenChannels,
this function opens the channels necessary to play the module. Playback will start from the
pattern at position startPos, and after the pattern at position endPos has been played, playback
will resume from the pattern at restartPos. This function can thus be used to play a section of
a module, and a single module can be used to store several songs.

Note! Currently, when multiple modules or module sections are played simultaneously, all
modules should have the same (BPM) tempo. Otherwise some modules may be played at the
wrong tempo. All modules can have different speed setting though.

Return value

MIDAS module playback handle for the module, or 0 if failed.

Operating systems

All

CHAPTER 4. MODULE PLAYBACK 55

See also

MIDASloadModule, MIDASstopModule, MIDASplayModule

CHAPTER 4. MODULE PLAYBACK 56

4.3.9 MIDASsetMusicSyncCallback

BOOL MIDASsetMusicSyncCallback(void (MIDAS_CALL *callback)
(unsigned syncInfo, unsigned position, unsigned row))

Sets the music synchronization callback.

Input

callback Pointer to the callback function, NULL to disable

Description

This function sets the music synchronization callback function. It will be called by the MIDAS
music player each time a Wxx command is played from a FastTracker 2 or Scream Tracker 3
module. The function will receive as its arguments the synchronization command infobyte (xx),
the current playback position and the current playback row. Setting callback to NULL disables
it.

MIDAS CALL is the calling convention used for the callback function — cdecl for Watcom and
Visual C/C++, empty (default) for GCC. Under MS-DOS the function will be called from the
MIDAS timer interrupt, so the module containing the callback function must be compiled with
the “SS==DS” setting disabled (command line argument “-zu” for Watcom C, default setting
for DJGPP). Under Win32 and Linux the function will be called in the context of the MIDAS
player thread.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

CHAPTER 4. MODULE PLAYBACK 57

4.3.10 MIDASsetMusicVolume

BOOL MIDASsetMusicVolume(unsigned volume)

Changes music playback volume.

Input

volume New music playback volume (0–64)

Description

This function changes the music playback master volume. It can be used, for example, for
fading music in or out smoothly, or for adjusting the music volume relative to sound effects.
The volume change only affects the song that is currently being played — if a new song is
started, the volume is reset. The default music volume is 64 (the maximum).

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

CHAPTER 4. MODULE PLAYBACK 58

4.3.11 MIDASsetPosition

BOOL MIDASsetPosition(int newPosition)

Changes module playback position.

Input

newPosition New playback position

Description

This function changes the current module playback position. The song starts at position 0, and
the length is available in the MIDASmoduleInfo structure. You should make sure that position
lies inside those limits. To skip backward or forward a single position, first read the current
position with MIDASgetPlayStatus, and substract or add one to the current position.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASplayModule, MIDASgetPlayStatus, MIDASgetModuleInfo

CHAPTER 4. MODULE PLAYBACK 59

4.3.12 MIDASstopModule

BOOL MIDASstopModule(MIDASmodule module)

Stops playing a module.

Input

module Module that is being played

Description

This function stops playing a module that has been played with MIDASplayModule. If the
channels were opened automatically by MIDASplayModule, this function will close them, but
if they were opened manually with MIDASopenChannels, they will be left open.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASplayModule, MIDASopenChannels

Chapter 5

Sample playback

5.1 Constants

This section describes all constants used in MIDAS sample playback. They are grouped ac-
cording to the enum used to define them.

60

CHAPTER 5. SAMPLE PLAYBACK 61

5.1.1 MIDASchannels

enum MIDASchannels

Description

These constants are used to indicate the channel number a sound should be played on. Le-
gal channel numbers range from 0 upwards, depending on the number of open channels. In
addition, MIDAS CHANNEL AUTO can be used with MIDASplaySample.

Values

MIDAS CHANNEL AUTO Select channel automatically, used with MIDASplaySample

MIDAS ILLEGAL CHANNEL Illegal channel number, returned by MIDASallocateChannel
as an error code.

CHAPTER 5. SAMPLE PLAYBACK 62

5.1.2 MIDASloop

enum MIDASloop

Description

These constants are used to indicate the loop type of a sample or stream.

Values

MIDAS LOOP NO Sample or stream does not loop

MIDAS LOOP YES Sample or stream loops

CHAPTER 5. SAMPLE PLAYBACK 63

5.1.3 MIDASpanning

enum MIDASpanning

Description

These constants are used to describe the panning position of a sound. Legal panning positions
range from -64 (extreme left) to 64 (extreme right), inclusive, plus MIDAS PAN SURROUND
for surround sound.

Values

MIDAS PAN LEFT Panning position full left

MIDAS PAN MIDDLE Panning position middle

MIDAS PAN RIGHT Panning position full right

MIDAS PAN SURROUND Surround sound

CHAPTER 5. SAMPLE PLAYBACK 64

5.1.4 MIDASsampleTypes

enum MIDASsampleTypes

Description

These constants identify different sample types. They are used with the functions MIDASload-
RawSample, MIDASplayStreamFile and MIDASplayStreamPolling to indicate the format of the
sample data. The byte order of the sample data is always the system native order (little endian
for Intel x86 systems).

Values

MIDAS SAMPLE 8BIT MONO 8-bit mono sample, unsigned

MIDAS SAMPLE 8BIT STEREO 8-bit stereo sample, unsigned

MIDAS SAMPLE 16BIT MONO 16-bit mono sample, signed

MIDAS SAMPLE 16BIT STEREO 16-bit stereo sample, signed

MIDAS SAMPLE ADPCM MONO 4-bit ADPCM mono sample (streams only)

MIDAS SAMPLE ADPCM STEREO 4-bit ADPCM stereo sample (streams only)

CHAPTER 5. SAMPLE PLAYBACK 65

5.2 Data types

This section describes all data types used in MIDAS sample playback.

CHAPTER 5. SAMPLE PLAYBACK 66

5.2.1 MIDASsample

typedef ... MIDASsample;

Description

MIDASsample is a sample handle that defines a sample that has been loaded into memory. The
sample handle is used for identifying the sample when playing or deallocating it.

CHAPTER 5. SAMPLE PLAYBACK 67

5.2.2 MIDASsamplePlayHandle

typedef ... MIDASsamplePlayHandle;

Description

MIDASsamplePlayHandle is a sample playing handle. It describes a sample sound that is being
played. The sample playing handle is used for controlling the attributes of the sound, such as
panning or volume, and for stopping the sound.

CHAPTER 5. SAMPLE PLAYBACK 68

5.3 Functions

This section describes all functions available for MIDAS sample playback.

CHAPTER 5. SAMPLE PLAYBACK 69

5.3.1 MIDASallocAutoEffectChannels

BOOL MIDASallocAutoEffectChannels(unsigned numChannels)

Allocates a number of channels for use as automatic effect channels.

Input

numChannels Number of channels to use

Description

This function allocates a number of channels that can be used as automatic effect channels
by MIDASplaySample. When MIDASplaySample is passed MIDAS CHANNEL AUTO as the
channel number, it will use one of these automatic channels to play the sound. The channels
allocated can be deallocated with MIDASfreeAutoEffectChannels.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASfreeAutoEffectChannels, MIDASplaySample

CHAPTER 5. SAMPLE PLAYBACK 70

5.3.2 MIDASfreeAutoEffectChannels

BOOL MIDASfreeAutoEffectChannels(void)

Deallocates the channels allocated for automatic effect channels.

Input

None.

Description

This function deallocates the channels allocated by MIDASallocAutoEffectChannels for use as
automatic sound effect channels.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASallocAutoEffectChannels

CHAPTER 5. SAMPLE PLAYBACK 71

5.3.3 MIDASfreeSample

BOOL MIDASfreeSample(MIDASsample sample)

Deallocates a sound effect sample.

Input

sample Sample to be deallocated

Description

This function deallocates a sound effect sample that has been previously loaded with MI-
DASloadRawSample or MIDASloadWaveSample. It removes the sample from the Sound Device
and deallocates the memory used. This function may not be called if the sample is still being
played.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASloadRawSample, MIDASloadWaveSample

CHAPTER 5. SAMPLE PLAYBACK 72

5.3.4 MIDASloadRawSample

MIDASsample MIDASloadRawSample(char *filename, int sampleType,
int loopSample)

Loads a raw sound effect sample.

Input

filename Sample file name

sampleType Sample type, see enum MIDASsampleTypes

loopSample Sample loop type, see enum MIDASloop

Description

This function loads a sound effect sample into memory and adds it to the Sound Device. The
sample file must contain just the raw sample data, and all of it will be loaded into memory.
If loopSample is MIDAS LOOP YES, the whole sample will be looped. After the sample
has been loaded, it can be played using MIDASplaySample, and it should be deallocated with
MIDASfreeSample after it is no longer used.

Return value

Sample handle if successful, NULL if failed.

Operating systems

All

See also

MIDASplaySample, MIDASfreeSample

CHAPTER 5. SAMPLE PLAYBACK 73

5.3.5 MIDASloadWaveSample

MIDASsample MIDASloadWaveSample(char *filename, int loopSample)

Loads a RIFF WAVE sound effect sample.

Input

filename Sample file name

loopSample Sample loop type, see enum MIDASloop

Description

This function loads a sound effect sample into memory and adds it to the Sound Device. The
sample file must be a standard RIFF WAVE (.wav) sound file, containing raw PCM sound
data — compressed WAVE files are not supported. If loopSample is MIDAS LOOP YES,
the whole sample will be looped. After the sample has been loaded, it can be played using
MIDASplaySample, and it should be deallocated with MIDASfreeSample after it is no longer
used.

Return value

Sample handle if successful, NULL if failed.

Operating systems

All

See also

MIDASplaySample, MIDASfreeSample

CHAPTER 5. SAMPLE PLAYBACK 74

5.3.6 MIDASplaySample

MIDASsamplePlayHandle MIDASplaySample(MIDASsample sample,
unsigned channel, int priority, unsigned rate,
unsigned volume, int panning)

Plays a sound effect sample.

Input

sample The sample that will be played

channel The channel number that is used to play the sample. Use MIDAS CHANNEL AUTO
to let MIDASplaySample select the channel automatically. See enum MIDASchannels.

priority Sample playing priority. The higher the value the more important the sample is con-
sidered.

rate Initial sample rate for the sample

volume Initial volume for the sample

panning Initial panning position for the sample. See enum MIDASpanning.

Description

This function is used to play a sound effect sample on a given channel. The sample will receive
as initial parameters the values passed as arguments, and playing the sample will be started. If
channel is MIDAS CHANNEL AUTO, the channel will be selected automatically. The sample
playing priority is used to choose the channel the sample will be played on in this case. Oth-
erwise a channel needs to be allocated with MIDASallocateChannel before the sample can be
played.

This function returns a sample playing handle, that can later be used to stop the sample or
change its parameters. This makes it possible to refer to samples without knowing the exact
channel they are played on.

Return value

Sample playing handle if successful, NULL if failed.

CHAPTER 5. SAMPLE PLAYBACK 75

Operating systems

All

See also

MIDASstopSample, MIDASallocAutoEffectChannels

CHAPTER 5. SAMPLE PLAYBACK 76

5.3.7 MIDASsetSamplePanning

BOOL MIDASsetSamplePanning(MIDASsamplePlayHandle sample,
int panning)

Changes the panning position of a sound effect sample.

Input

sample Sample to be changed

panning New panning position for the sample (see enum MIDASpanning)

Description

This function changes the panning position of a sound effect sample that is being played. See
description of enum MIDASpanning for information about the panning position values.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASplaySample

CHAPTER 5. SAMPLE PLAYBACK 77

5.3.8 MIDASsetSamplePriority

BOOL MIDASsetSamplePriority(MIDASsamplePlayHandle sample,
int priority)

Changes the playing priority of a sound effect sample.

Input

sample Sample to be changed

priority New playing priority for the sample

Description

This function changes the playing priority a sound effect sample that is being played.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASplaySample

CHAPTER 5. SAMPLE PLAYBACK 78

5.3.9 MIDASsetSampleRate

BOOL MIDASsetSampleRate(MIDASsamplePlayHandle sample,
unsigned rate)

Changes the sample rate for a sound effect sample.

Input

sample Sample to be changed

rate New sample rate for the sample

Description

This function changes the sample rate for a sound effect sample that is being played.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASplaySample

CHAPTER 5. SAMPLE PLAYBACK 79

5.3.10 MIDASsetSampleVolume

BOOL MIDASsetSampleVolume(MIDASsamplePlayHandle sample,
unsigned volume)

Changes the volume for a sound effect sample.

Input

sample Sample to be changed

rate New volume for the sample (0–64)

Description

This function changes the volume for a sound effect sample that is being played.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASplaySample

CHAPTER 5. SAMPLE PLAYBACK 80

5.3.11 MIDASstopSample

BOOL MIDASstopSample(MIDASsamplePlayHandle sample)

Stops playing a sample.

Input

sample Sample to be stopped

Description

This function stops playing a sound effect sample started with MIDASplaySample. Playing the
sound will stop, and the channel is freed for other samples to use. Note that sample is the
sample playing handle returned by MIDASplaySample.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASplaySample

Chapter 6

Stream playback

6.1 Constants

This section describes all constants used in MIDAS stream playback. They are grouped accord-
ing to the enum used to define them. Note that stream playback properties, such as volume and
panning, are controlled similarily those of samples.

81

CHAPTER 6. STREAM PLAYBACK 82

6.2 Data types

This section describes all data types used in MIDAS stream playback.

CHAPTER 6. STREAM PLAYBACK 83

6.2.1 MIDASstreamHandle

typedef ... MIDASstreamHandle;

Description

MIDASstreamHandle is a stream handle that defines a digital audio stream that is being played.
Streams only exist in the system when they are being played, so there is no separate “playing
handle” data type.

CHAPTER 6. STREAM PLAYBACK 84

6.3 Functions

This section describes all functions available for MIDAS stream playback.

CHAPTER 6. STREAM PLAYBACK 85

6.3.1 MIDASfeedStreamData

unsigned MIDASfeedStreamData(MIDASstreamHandle stream,
unsigned char *data, unsigned numBytes, BOOL feedAll);

Feeds sound data to a digital audio stream buffer.

Input

stream The stream that will play the data

data Pointer to sound data

numBytes Number of bytes of sound data available

feedAll TRUE if the function should block until all sound data can be fed

Description

This function is used to feed sample data to a stream that has been started with MIDAS-
playStreamPolling. Up to numBytes bytes of new sample data from *data will be copied
to the stream buffer, and the stream buffer write position is updated accordingly. The function
returns the number of bytes of sound data actually used. If feedAll is TRUE, the function will
block the current thread of execution until all sound data is used.

Return value

The number of bytes of sound data actually used.

Operating systems

Win32, Linux

See also

MIDASplayStreamPolling

CHAPTER 6. STREAM PLAYBACK 86

6.3.2 MIDASgetStreamBytesBuffered

DWORD MIDASgetStreamBytesBuffered(MIDASstreamHandle stream)

Gets the number of bytes of stream currently buffered.

Input

stream The stream handle

Description

This function returns the number of bytes of sound data currently stored in the stream buffer. It
can be used to monitor the stream playback, and possibly prepare to feed extra data if the figure
gets too low.

Return value

The number of bytes of sound data currently buffered.

Operating systems

Win32, Linux

See also

MIDASfeedStreamData

CHAPTER 6. STREAM PLAYBACK 87

6.3.3 MIDASpauseStream

BOOL MIDASpauseStream(MIDASstreamHandle stream)

Pauses stream playback.

Input

stream The stream to pause

Description

This function pauses the playback of a stream. When a stream is paused, stream data can be
fed normally with MIDASfeedStreamData, but nothing will actually be played. Playback can
be resumed with MIDASresumeStream.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

See also

MIDASresumeStream, MIDASfeedStreamData

CHAPTER 6. STREAM PLAYBACK 88

6.3.4 MIDASplayStreamFile

MIDASstreamHandle MIDASplayStreamFile(char *fileName,
unsigned sampleType, unsigned sampleRate,
unsigned bufferLength, int loopStream)

Starts playing a digital audio stream from a file.

Input

fileName Stream file name

sampleType Stream sample type, see enum MIDASsampleTypes

sampleRate Stream sample rate

bufferLength Stream playback buffer length in milliseconds

loopStream 1 if the stream should be looped, 0 if not

Description

This function starts playing a digital audio stream from a file. The file must contain raw audio
data with no headers — to play WAVE files, use MIDASplayStreamWaveFile. The function
allocates the stream buffer, creates a new thread that will read sample data from the file to the
stream buffer, and starts the Sound Device to play the stream. The stream will continue play-
ing until it is stopped with MIDASstopStream. A Sound Device channel will be automatically
allocated for the stream.

The stream buffer length should be at least around 500ms if the stream file is being read from a
disc, to avoid breaks in stream playback

Return value

MIDAS stream handle if successful, NULL if failed.

Operating systems

Win32, Linux

CHAPTER 6. STREAM PLAYBACK 89

See also

MIDASplayStreamWaveFile, MIDASstopStream

CHAPTER 6. STREAM PLAYBACK 90

6.3.5 MIDASplayStreamWaveFile

MIDASstreamHandle MIDASplayStreamWaveFile(char *fileName,
unsigned bufferLength, int loopStream)

Starts playing a digital audio stream from a RIFF WAVE file.

Input

fileName Stream file name

bufferLength Stream playback buffer length in milliseconds

loopStream 1 if the stream should be looped, 0 if not

Description

This function starts playing a digital audio stream from a file. The file must be a standard
RIFF WAVE (.wav) sound file containing raw PCM sound data — compressed WAVE files
are not supported. The function allocates the stream buffer, creates a new thread that will read
sample data from the file to the stream buffer, and starts the Sound Device to play the stream.
The stream will continue playing until it is stopped with MIDASstopStream. A Sound Device
channel will be automatically allocated for the stream.

The stream buffer length should be at least around 500ms if the stream file is being read from a
disk, to avoid breaks in stream playback

Return value

MIDAS stream handle if successful, NULL if failed.

Operating systems

Win32, Linux

See also

MIDASplayStreamFile, MIDASstopStream

CHAPTER 6. STREAM PLAYBACK 91

6.3.6 MIDASplayStreamPolling

MIDASstreamHandle MIDASplayStreamPolling(unsigned sampleType,
unsigned sampleRate, unsigned bufferLength)

Starts playing a digital audio stream in polling mode.

Input

sampleType Stream sample type, see enum MIDASsampleTypes

sampleRate Stream sample rate

bufferLength Stream playback buffer length in milliseconds

Description

This function starts playing a digital audio stream in polling mode. It allocates and empty
stream buffer, and starts the Sound Device to play the stream. Sample data can be fed to the
stream buffer with MIDASfeedStreamData. The stream will continue playing until it is stopped
with MIDASstopStream. This function will automatically allocate a Sound Device channel for
the stream.

To avoid breaks in playback, the stream buffer size should be at least twice the expected polling
period. That is, if you will be feeding data 5 times per second (every 200ms), the buffer should
be at least 400ms long.

Return value

MIDAS stream handle if successful, NULL if failed.

Operating systems

Win32, Linux

See also

MIDASstopStream, MIDASfeedStreamData

CHAPTER 6. STREAM PLAYBACK 92

6.3.7 MIDASresumeStream

BOOL MIDASresumeStream(MIDASstreamHandle stream)

Resumes stream playback after pause.

Input

stream The stream to resume

Description

This function resumes the playback of a stream that has been paused with MIDASpauseStream.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

See also

MIDASpauseStream

CHAPTER 6. STREAM PLAYBACK 93

6.3.8 MIDASsetStreamPanning

BOOL MIDASsetStreamPanning(MIDASstreamHandle stream,
int panning);

Changes stream panning position.

Input

stream Stream handle for the stream

panning New panning position for the stream

Description

This function changes the panning position for a stream that is being played. The initial volume
is 0 (center). See description of enum MIDASpanning for information about the panning position
values.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

See also

MIDASsetStreamVolume, MIDASsetStreamRate

CHAPTER 6. STREAM PLAYBACK 94

6.3.9 MIDASsetStreamRate

BOOL MIDASsetStreamRate(MIDASstreamHandle stream,
unsigned rate);

Changes stream playback sample rate.

Input

stream Stream handle for the stream

rate New playback sample rate for the stream, in Hertz.

Description

This function changes the playback sample rate for a stream that is being played. The initial
sample rate is given as an argument to the function that starts stream playback.

Note that the stream playback buffer size is calculated based on the initial sample rate, so the
stream sample rate should not be changed very far from that figure. In particular, playback
sample rates over two times the initial value may cause breaks in stream playback. Too low
rates, on the other hand, will increase latency.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

See also

MIDASsetStreamVolume, MIDASsetStreamPanning

CHAPTER 6. STREAM PLAYBACK 95

6.3.10 MIDASsetStreamVolume

BOOL MIDASsetStreamVolume(MIDASstreamHandle stream,
unsigned volume);

Changes stream playback volume.

Input

stream Stream handle for the stream

volume New volume for the stream, 0–64.

Description

This function changes the playback volume for a stream that is being played. The initial volume
is 64 (maximum).

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

See also

MIDASsetStreamRate, MIDASsetStreamPanning

