DirectX Shell For Converting DOS Graphics Programs To Win95

by CuteElf

v1.0 released 28 February 97

i. * Introduction

This software is designed to make life easier for those wanting to adapt an existing graphics project to Window 95, or to make a new project using Windows 95. It provides a quick start to DirectX so that you can at least get something on the screen without having to understand and troubleshoot the new graphics APIs. Additionally, if you are careful to restrict yourself to this API when writing DOS programs, you can easily write programs that compile for both systems.

This does not provide support for sound (which you can use DirectSound for, although it's not much of an advance on the standard Windows sound routines) or keyboard input (DirectInput). Having seen examples of how the overall system work, you can add this support yourself.

What this does do is provide a simple environment to remove all the DirectX-specific details from writing 320x200 full-screen mode graphics code; you simply provide the screen buffers for each frame.

ii. * License

You may use and modify the provided source-code as you desire, in both free and commercial software, following these conditions:

If you release source code

You must leave my copyright notices in the source files (adding your own notices to refer to your changes, if any).

If you release executable programs

If the program is not free, you must include a credit or thanks notice mentioning my name (either realname, Samuel Marshall, or handle, CuteElf) along with the other credits for the program.

If the program is completely free, this notice is optional, but I'd still like it. :)

iii. * Requirements

You will need Microsoft's DirectX SDK. The instructions for getting things running assume you are using MS Visual C++ 4.x, but this should work with all compilers supported by DirectX.

 1 * Getting things working

A sample use of the shell - a plasma program that fades to different colours every so often - is provided. You can use this to test you have set things up correctly.

To set this up in Developer Studio, perform the following steps:

In Developer Studio, choose File/New and select "Project workspace". Choose "Application", rather than any of the MFC or OLE options, and enter a name. I used DirectXPlasma.

Open a window on that directory (c:\msdev\projects\DirectXPlasma if you use default paths) from Explorer. Also, open a window on the directory you unzipped this file into, or on the zipfile if you have Windows zip tools.

Copy the following shell files from the zip into your directory:

DirectXConversion.cpp (main shell code)

DirectXConversion.h (include file so as to use shell functions from other files)

UserSettings.h (file controlling settings for the shell; in particular, window title)

DXErrors.h (file that translates errors from DirectX into text; used if errors occur)

Copy the following example files from the zip into your directory:

Plasma.cpp

Plasma.ico

Using the "Insert/Files into project" menu option, add DirectXConversion.cpp and Plasma.cpp to the project.

Choose "Insert/Resource", Icon, Import, Plasma.ico and then get properties (alt-enter) to set its name field to "PlasmaIcon", including the quotes. Close the windows created by this operation, and save the .rc file as Plasma.rc. Add this file to the project.

You will also need to add some DirectX libraries to your project. In particular, ddraw.lib and dxguid.lib are required for the shell.Use "Insert/Files into project" and find these libraries.

That's all; you can now build and run the app. If there are errors about not being able to find required header files, add in the DirectX directory to the "include search path" of Developer Studio; you can do this using Tools/Options/Directories.

2 * Using the provided system for your own projects

The concept of this system is that you can write your project as if it were a single-tasking app that simply creates new screen frames every so often. You write a function which is the entrypoint of the thread, equivalent to the main() function in a regular app.

Here's the typical structure of such a function.

#include "DirectXConversion.h"

DWORD PASCAL MyFunc(void*)

 {

 // Initialisation - precalculate tables, set palette, etc

 // Frame loop - check if we should exit

 while(sg_fThreadQuit || /* Other Ending Conditions */)

 {

 // Get the memory buffer to use for a frame and the

 // line offset necessary

 BYTE* pbBuffer;

 int iLineOffset;

 HrStartFrame(pbBuffer,iLineOffset);

 // Draw into buffer for this frame

 // Finish the frame

 HrFinishFrame();

 }

 // See if user requsted quit

 if(sg_fThreadQuit)

 {

 sg_fThreadQuit=false;	// Signal that we noticed

 return 0;

 }

 // If we exited the loop normally, continue with other

 // frame loops, etc...

 }

Key points you need to consider:

The HrStartFrame function obtains you a pointer to an offscreen buffer; you can consider this equivalent to a screen pointer on a 320x200 screen, except that after each screen line there is an offset of iLineOffset bytes before the next one starts.

You must exit within a short time of sg_fThreadQuit being set.

Do not exit between HrStartFrame and HrFinishFrame - this will cause the program to hang. Each HrStartFrame must have a corresponding HrFinishFrame.

You'll notice that even though these functions provide HRESULT return values, I didn't check them. See the "Bugs" section below for the reason why.

As it is, the shell provides no way for the program to exit until the user closes the window; if you just return from the function, the screen will be left as it is until the user closes the window. (This behaviour is probably acceptable.)

Stages you'll need to go through to convert the shell to use your function instead of the plasma one are as follows:

Remove plasma.cpp from the project, and add in your own .cpp.

Edit the icon, probably changing its name.

Change UserSettings.h to include the name of your function, the name of the icon, and the title you'd like your program to have in the taskbar and Alt-Tab box.

3 * Reference to provided functions and variables

HRESULT HrStartFrame(BYTE* &pbBuffer, int &iLineOffset)

This function retrieves an offscreen buffer for you to write to, into pbBuffer. The buffer may have a gap between lines (in addition to the 320 bytes actually taken up by the line), the size of which is returned in iLineOffset.

You should probably not make assumptions about the initial contents of this buffer, in other words, you should write to every pixel in the buffer before finishing the frame. If you'd like a static buffer (i.e. you only want to change a small amount of data each frame) you can use HrNewFrame instead and manage your own buffer to pass to that; this is purely for convenience, however, since the whole buffer will still be copied each frame.

In some cases, this function might end up waiting around for vertical retrace rather than returning immediately.

You must call HrFinishFrame once you have called this function, in all circumstances; doing otherwise is extremely likely to result in the program hanging.

The function returns an error code if any of the DirectX functions used fails, otherwise it returns DD_OK. Note that it may fail due to my bugs; see below.

*

HRESULT HrFinishFrame()

This function flips the offscreen buffer retrieved using HrStartFrame so that it is on the screen. It will wait for vertical retrace rather than returning immediately, so there's no need to worry about screen flicker.

If you call this function without a corresponding HrStartFrame beforehand, it is likely to hang the system.

The function returns an error code if any of the DirectX functions used fails, otherwise it returns DD_OK. Note that it may fail due to my bugs; see below.

*

HRESULT HrNewFrame(BYTE* pbBuffer)

This function combines the two previous functions into one, making it easier to use but also less efficient due to an additional memory copy.

Call this program with a standard 64,000 byte 320 x 200 buffer. It will cause that buffer to be displayed on the screen, and will return after that's been achieved.

The function returns an error code if any of the DirectX functions used fails, otherwise it returns DD_OK. Note that it may fail due to my bugs; see below.

*

void SetPalette(BYTE* pbPalette)

This function sets the display palette.

pbPalette should point to a 768-byte array representing a palette, in the format

colour 0 red, colour 0 green, colour 0 blue, colour 1 red, colour 1 green, ...

Each byte should vary between 0 (none of that colour component) and 255 (full intensity for that colour component).

*

BOOL sg_fThreadQuit

This variable is set to TRUE (non-zero) to indicate that the user wishes to exit the program. You must poll for this (check its value) regularly. Upon detecting it as TRUE, you must set the variable to FALSE (zero) and return from your main procedure.

*

int sg_iFrameCount

This variable counts total frames since the start of the program and might be useful for profiling or something.

4 * Bugs

I just spent an entire afternoon trying to fix this bug (no, I didn't have the spare time for this, so if I fail my degree it's your fault ;). What happens is as follows:

When the user switches window by pressing Alt-Tab, somehow the DirectX state is invalidated in some way (due to changing screen mode, or something) before the WM_ACTIVATE message is sent. This message is supposed to be sent before the window is deactivated. I use WM_ACTIVATE to suspend the calculation thread; therefore, because of the delay with that message, there is a short time when the program's calculating thread (the plasma function) is still running, but DirectX is not in a valid state. This causes the HrStartFrame and HrFinishFrame to return error values.

I tried all kinds of solutions including trapping the actual keypress Alt-Tab, but I ran into problems. (I believe Alt-Tab is handled in a special way since Win95; application programs are not allowed access to it, because then they could hang the whole system by making switching between apps impossible and then crashing. Or something.)

So anyway, the failed calls appear to have no adverse effect. But if you trap error returns from these calls, your only action should be not to increment the "current frame" counter of your effect; you should not abort the routine or display messages.

iv. * End

That's all for now, folks...

If you want to contact me about this, to offer suggestions or bugfixes, please do so. I can be reached at one of the following addresses (please try only one at a time starting from the first; if it bounces, try the next):

Samuel.Marshall@durham.ac.uk

quentinus@dal.net

petermarshall@cix.compulink.co.uk

[my dad's address.. don't use unless the others are broke ;)]

Please don't email me if you are having problems using this, unless you've tried all other possibilities and you think I'll be able to help, and the plasma program works. (If the plasma program doesn't work, then there's something wrong with your system or setup and I won't be able to help, since it clearly works here.) Since this is a free program, I don't feel inclined to do too much technical support...

You can find my webpage at http://www.dur.ac.uk/~d405ua/.

I have released several shareware programs which you can get from that site, or from FTP and web sites worldwide. They are:

iNETRiS - popular Internet-capable Tetris game for Win 3.x or 95; $10 registration

SysEx Manager - stores MIDI system exclusive data from your synthesizers. Win 3.x; $10 registration

SysEx Solution - includes the Win95 version of the above, also a configurable librarian, and for those who have the Korg M1 synth, an editor. Win95; $10 per module (out of the three listed) registration

And, to be released soon (I hope):

CuteBreaks - lets you use and abuse drum loops sampled from your own music CDs. Take them apart, mix them together, make new patterns, and have fun. Easier than a sampler, though probably less powerful :) Professional-quality sounds; fast software mixing. Win95; $25 registration

