COMP 4983

FINAL PROJECT

“TO BE CONTINUED…”

Rick Giles - Comp 4983 - Final Project

Written Report (Due: Tuesday, April 2nd, 1999)

Matthew J. Doucette - 100019062

All information contained in this document, including but not limited to, titles, names, text, documentation, specifications, diagrams, and source code, are copyright (1999 by Matthew Joseph Doucette. All rights reserved. No part of this work covered by the copyright herein may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including but not limited to, photocopying, recording, taping, or information storage and retrieval systems - without the explicit written consent of Matthew Joseph Doucette.

There are no exceptions.

Table of Contents

2Table of Contents

Abstract
3
Introduction
3
Schedule
3
Specific Descriptions
4
3D (2D Conversion
4
3D Translation
4
3D Rotation
5
Microsoft Visual C++ 5.0
5
Midas Digital Audio System Programming
5
Glide Programming
6
Specific Demo Effects
8
Flat Shading
8
Gouraud/Smooth Shading
9
Gouraud Shading Specular Highlights
10
Environment/Reflection Mapping
11
Phong Shading
12
3D Parameterization
13
Canadian Flag
14
Rotation
15

Abstract

This paper is a report on my graphic demo project “To Be Continued…” The main goal of the project was to create a program that showcased my abilities in computer graphics. More specifically, the main goal was to showcase my abilities in three dimensional graphics and programming a 3Dfx graphics card in combination with a sound system to play background music and sound effects. “To Be Continued…” was designed, tested, and implemented during my final term at Acadia University for my Comp 4983 Final Project course. It was programmed in Microsoft Visual C++ 5.0 on an AMD-K6 200Mhz computer with a Monster 3D II Voodoo 3Dfx graphics card.

Introduction

Discussed in this report are the details behind the creation of “To Be Continued…” Many smaller details have been omitted. Basic knowledge of computer graphics and computer graphic terminology is expected.

Schedule

The first step in creating “To Be Continued...” was designing a schedule. The schedule was a rough approximation of what steps were necessary in order to create “To Be Continued...” Here’s the basic schedule:

· Learn 3D Mathematics and Formulas.

· Learn To Program In Microsoft Visual C++ 5.0

· Learn To Program Using The Glide Software Development Kit (3Dfx’s SDK For Programming 3Dfx Cards)

· Learn To Program 3D graphics (still shots)

· Learn To Program Animations

· Create Separate Demo Effects

· Learn To Program MIDAS Digital Audio System, and lastly…

· Create a Main Demo Program that Incorporates All the Above Knowledge into a real-time Animated Multi-Media Slide Show to be called “To Be Continued…”

Specific Descriptions

3D (2D Conversion

This was easy and required no research at all as I already had basic 3D mathematics knowledge. Basically, you need to convert 3D coordinates (x1,y1,z1) into 2D coordinates (x2,y2), as the screen is only 2D. (The card does not do this for you.) The formula is simple. Divide by z:

x2 = x1 / z1

y2 = y1 / z1

A simple inspection of the formula indicates it works. An object that is twice as far away is twice as small. (This can be determined by testing a real world situation. I figured it out about 10 years ago from measured aircraft photographs of the ground.) Here’s what happens if you multiply z1 by 2 (moving the object twice as far away):

x2 = x1 / z1*2

y2 = y1 / z1*2

…and x2 and y2 get divided by 2 because z1 is the denominator in the fraction, thus an object twice as far away is twice as small.

3D Translation

Easy, just add values to the x, y, and z positions.

3D Rotation

Of course, you need to be able to rotate the object too, not just translate them. This is accomplished using three 2D rotations (for the three axis of rotations). First rotate around x-axis, then y-axis, and lastly the z-axis. Certain calculations from previous rotations can be used in latter rotations for optimization (via temporary variables). In other words combine all three rotation formulas into one to save time. Here’s the rotation around the x-axis:

// 2D rotation around x-axis

z_rotated = z*cosine[angle] + y*sine[angle];

y_rotated = -z*sine[angle] + y*cosine[angle];

Microsoft Visual C++ 5.0

Learning Visual C++ 5.0 was a big step. My only C experience came from an Acadia University course, three years ago, on a text-based Unix machine called the Dragon. Learning how to use a complicated compiler like VC++ 5.0, all on my own, took a lot of time and experimenting. Although this step cannot be explained in any more detail, it is imperative that this is noted.

Midas Digital Audio System Programming

Midas D.A.S. is a sound system from Housemarque Inc. It is released with full source code and is available for use for free in any non-profit production. Learning to program Midas was not hard. However, learning to properly setup Visual C++ 5.0 to use Midas was. It took a lot of time and was quite frustrating. Fortunately, it was worth it. Midas’ performance is outstanding, using only 1% of CPU playing a CD-quality ‘tracked’ (fully digital) song. It should be noted that searching for an appropriate sound system was very time consuming.

Glide Programming

Glide is an SDK (Software Developer’s Kit) from 3Dfx Interactive Inc. It was used to program the 3Dfx graphics card. What exactly is Glide? I will explain with quotes from the Glide Programming Guide:

“The Glide Rasterization Library is a set of low level rendering functions that serve as a software “micro-layer” to the Voodoo Graphics family of graphics hardware, including the 3Dfx Interactive Texelfx ™ and the Pixelfx™ special purpose chips. Glide permits easy and efficient implementation of 3D rendering libraries, games, and drivers.”

You should note that Glide is not a 3D rendering library. To avoid any misconceptions, here another quote from the Glide Programming Guide (the one in “To Be Continued…”):

“Glide is not a full featured graphics API such as OpenGL™, PHIGS, or the Autodesk CDK™; it does not provide high level 3D graphics operations such as transformations, display list management, or light source shading. Glide specifically implements only those operations that are natively supported by the Voodoo Graphics hardware. In general, Glide does not implement any functions that do not directly access a Voodoo Graphics subsystem’s memory or registers.”

With that explained, I should explain what is natively supported by the Voodoo Graphics hardware to avoid some common misconceptions about what 3Dfx cards do. Here’s a list of what they can and cannot do:

3Dfx CAN:

· Draw a 2D Point (vertices specified in 2D coordinates)

· Draw a 2D Line (vertices specified in 2D coordinates)

· Draw a 2D Triangle (vertices specified in 2D coordinates)

· Draw a Gouraud (2D) Shaded Triangle (requires three colors for the vertices; triangle shading performed by linear interpolation between all three vertices; note that this is 2D shading as no distance value for each vertex is taken into consideration)

· Draw a 3D-Textured Triangle (mipmapped and perspective correct; requires three texture coordinates and 1/z values for the vertices; note the texture is drawn in 3D, but not the triangle)

· Draw a Depth-Buffered Triangle (perspective correct; 16-bit; if given 1/z values; works better if depth buffer range is minimized)

3Dfx CANNOT:

· Draw A 3D Triangle (although it can perspective texture map and depth buffer)

· Draw A Polygon Of Greater Than 3 Vertices

· Create Mipmaps (they must be created externally)

· Convert 3D Coordinates To 2D

· Perform 2D Rotations

· Perform 3D Rotations

· Perform 2D Clipping (actually it can, just pathetically slow, by range checking at the end of the pixel pipeline, thus wasting lots of precious time calculating pixel values of pixels not drawn; it’s more appropriate and efficient to perform 2D clipping yourself, then pass Glide your clipped triangle.)

· Perform 3D Clipping

· Perform Light Source Shading

· Perform Specular Highlights

· Perform Phong Shading

· Perform Environment/Reflection Mapping

· Perform Any And All Other High Level 3D Operations

Basically, the only “3D” the 3Dfx card performs is perspective texture mapping and perspective depth buffering. All other 3D operations, including the calculations (such as 1/z) required for perspective texture mapping and depth buffering, have to be coded by the programmer.

Also, there are many other things that you must learn in order to program 3Dfx that most people do not realize (and the 3Dfx card does not do for you):

· Texture Loading Management

· Font Drawing Procedures

· Texture Mapping Unit Setting Up (Texture Mapping / Mipmapping / Gouraud Shading / Alpha Component [transparency, highlights, etc.] / etc. For every different type of polygon, the card must be reset into the appropriate mode.)

· Etc.

Specific Demo Effects

Flat Shading

[image: image1.png]
Flat shading requires a normal for each face of the 3D object. Using this normal with the light source normal and the dot product, the amount of illumination for each face can be determined. The formula required is the flux of a constant flow (the light) through a flat surface (each face). Of course the size of the flat surface (determined by the normal length) affects the flux, and therefore the normals are normalized. (Otherwise the larger faces would shine brighter.) Here’s the formulas:

DOT PRODUCT:

x1.x2 = x1*x2 + y1*y2 + z1*z2

- x1 and x2 are 3D vectors

FLUX OF A CONSTANT FLOW

THROUGH A FLAT SURFACE:

Flux through vector(A) = vector(v).vector(A)

- magnitude of vector(A) = area of surface

- direction of vector(A) = direction of positive normal

The maximum flux depends on the normal lengths. Normalizing the lengths to 1 will result in a flux range of [-1..1]. Depending on whether your normals point in or out you may have to negate the flux. Positive flux will be light hitting the front of the face, 0 being no light and 1 being full light. Negative flux is zero light, unless your object uses both sides of a polygon. If so, you should treat negative flux exactly like positive flux.

Gouraud/Smooth Shading

See next picture for Gouraud Shading

Gouraud shading requires a normal for each vertex (not each face as in flat shading) of the 3D object. Exactly as in flat shading, using these normals with the light source normal and the dot product, allows the amount of illumination of each vertex to be determined. What makes Gouraud shading so much better is that each triangle (face) smoothly shades the transition from all three vertices. This creates a smooth surface effect and approximates a curved surface, even though the actual object is “blocky”.

Gouraud Shading Specular Highlights

[image: image2.png]
Specular Highlights are a simple addition to Gouraud shading. What a specular highlight is in real life is the reflection of the light source itself off the object, not the illumination of the object. For example, look at an apple. The red (or green) part is the illumination, and the little white part is the specular highlight. (Notice that the white color is the color of the light source). Adding specular highlights creates a glossy effect.

It is accomplished by taking high flux values, (on the range [-1..1] it would be the ones close to 1), and adding a brighter illumination of white color to these values. I used a linear formula, mapping the high flux values of [0.85..1] linearly to [0..0.25], where 0..0.25 means 0%..25% full brightness (full white). There are more accurate formulas that use cosine to create a smoother specular highlight but Gouraud Shading is not accurate enough to notice any such difference.

Environment/Reflection Mapping

[image: image3.png]
Environment Mapping is mapping an environment around an object. Thus, it creates a reflective object because you can see its surroundings (the environment) reflecting off of it. This is accomplished by using the vertex normals to ‘point’ to the environment. The environment has to be a flat texture, although it should be a sphere, so this requires tricky calculations. However, I devised an easy and efficient method. I ignored the z value in the normal and mapped the x and y values to the s and t coordinates of the texture.

ENVIRONMENT MAPPING:

s = 128.0+x*128;

t = 128.0-y*128;

where:
x,y = normal values
range = [-1.0..1.0]

s,t = texture coordinates
range = [0.0..256.0]

You may have guessed that ignoring the z doubles the texture on the object. If the object were a sphere, the texture would be mapped onto the front half and onto the back half. This is not a problem, as you never see the back half of the environment mapping on an object, unless you move with respect to the environment. When the object rotates, twists, or spins, the environment mapping remains facing you in the same direction at all times.

Phong Shading

[image: image4.png]
Phong Shading is an extremely intensive calculation process. It is similar to Gouraud shading except the normals are interpolated across the surface of the polygon instead of the calculated shade color. Plus, 3Dfx does not support any type of Phong shading. I accomplished it by devising a demo trick.

I Gouraud shaded the object and use my environment mapping technique to map a Phong specular highlight onto the object. The environment map texture is a small bright specular highlight created from reverse engineering the environment mapping formula that I used. (If I were to use a different environment mapping formula, I would have to adjust the phong specular highlight texture to accommodate it).

If there was no specular highlight, Gouraud shading and Phong shading are practically the same. It’s the small specular highlight, with its rapid change in color over such a small area, which presents problems for Gouraud shading. If the specular highlight were completely inside a polygon, Gouraud shading would skip it completely. (Therefore you must make the specular highlight large when using Gouraud shading.) Phong Shading never skips over the specular highlight, and my method produces exactly the same result as true Phong shading (when dealing with polygon meshed surfaces).

3D Parameterization

[image: image5.png]
This effect is a 3D-parameterization formula that is used to create an object at run time. The object is environment mapped to appear metallic. Some amazing objects can be created, and it’s interesting to see what all those math formulas from calculus actually look like.

Canadian Flag

[image: image6.png]
This effect is a Gouraud shaded texture mapped Canadian flag. The flag waves by using a sine wave, where the angle passed to sine is calculated according to the (x,y) position of the point. What’s interesting about this effect is that the vertex normals change every frame and require re-calculation in real-time (where my other effects calculate the normals only once, and rotate them with the object).

Rotation

[image: image7.png]
This effect is a rotating texture. Nothing too special about it, you may have noticed that this effect is run in the background of every other effect except flat shading. What’s interesting is that the entire effect only uses two stationary triangles. The texture map coordinates are the only things that change. The texture-mapping unit is set to ‘wrap’ so that the one triangle can display more than one texture map, which allows zooming out and viewing multiple identical textures

PAGE
15

