
CAN FLI!
THE

Dragon & George, a multi-color FLI picture by Andreas W. Andersen of SHAPE demo group.

Two Articles by Todd S. Elliott



Page 1Commodore Currents SuperCPU Full-Screen FLI Feature

   Welcome to the premiere issue of
Commodore Currents! This endeavor
is intended to be a semi-regular printed
publication someday. Currently, due to the
high cost of printers that can print 11x17
paper, this publication will be published as
a PDF file on the Internet. Naturally, the
PDF file will be free to all who can
download it and view/print it out.
Hopefully, in the not too distant future, I
can publish Commodore Currents
in-house with a 11x17 printer and distribute
it via a subscription method on a
semi-regular basis.
   Just what is Commodore Currents all
about? Initially, I wanted a publication that
could reprint all of my articles I’ve written
for various Commodore oriented
publications. I fully intend to publish this
endeavor via Wheels, geoPublish,
geoWrite and PostPrint II/III and use
the power of PostScript to get my articles
in print. However, I will be using a
mainstream computer to do some graphics,
such as the Commodore Currents logo,
grabbing screenshots of actual
Commodore 64/128 screens,
GhostScript for the PDF conversion,
GhostView for the layout proofing, and
more! This is Commodore GEOS
printing at its finest!
   For the premiere issue here, I’ve selected
two articles I’ve originally submitted to two
different publications, all on the same
subject, The SuperCPU can do
Full-Screen FLI Pictures. The first
article was originally published in the
Commodore Digest, one of the premier
Commodore GEOS publishing efforts
edited by K. Dale Sidebottom and Rolf
L. Miller of the UCUGA users group.
This article is intended for beginners, who
are not familar with demo coding tricks
used in achieving the FLI mode of the
C64/128 computers. The second article was
originally published in ultra-technical
C=Hacking online magazine published
by Steve Judd. That article is fully

intended for experienced programmers
knowledgeable about the FLI mode of the
C64/128 computers, and SuperCPU coding
experience is not a pre-requistite. I’ve
included some screenshots of FLI pictures
for some ’eye candy’ throughout the two
articles.
   A little sidebar here-- The FLI picture
mode was first used in the milestone
demo, Dutch Breeze, by the Blackmail
demo group. I give grateful
acknowledgement to these pioneering
coders who simply dared to push further
the boundaries of the VIC-II chip to depths
never imagined by Commodore itself.
   About the future of this natty publication
from the esteemed editor: Commodore
Currents, for the next few issues, will
contain reprints from my Commodore
article repository. While I am not as
prolific as other notable Commodore
scribes, I hope to organize my content over
several issues on a semi-regular basis.
Once I have a 11x17 printer, I will seriously
examine publishing possibilities for a
newsletter or magazine giving the usual
breadth and depth of leading Commodore
concepts out there. Such coverage, not
necessarily limited to, would emcompass
GEOS, demos, programming, with an eye
towards using the machines as a main
hobby instead of waxing a nostalgic look
like those ’retro’ magazines usually do. Of
course, since this would be published
in-house, there’s no printer delays, etc.
Still, this publication would be a hobbyist
endeavor and the promise of a prompt
publishing schedule is one that cannot be
kept, hence I hope to undertake it on a
semi-regular basis.
   Without further ado, enjoy reading about
how the SuperCPU can achieve a
full-screen FLI picture, opening up the
possibilities for further explorations of
demo programming revolving around the
VIC-II chip and the SuperCPU’s DMA
capabilities.
   This publication, while not perfect,
strives to publish material that recognizes
all relevant intellectual properties as
belonging to their respective authors. To
the extent practical, I have secured some
permissions from the author(s) to reprint
the relevant works here. If you, the reader,

possess an intellectual property interest in
any material presented in this publication,
please let me know of any objection(s) you
may have.
   I have included a short bibliography here
to give due credit(s) to various authors and
other program(s) that have contributed to
the successful creation of this publication.

Wheels OS
SuperCPU
Concept+
All by Maurice Randall at:

www.cmdrkey.com
C64 Gallery
Maintained by Roman Cheblec 
(CreaMD). A must see for C64 graphics 
enthusiasts!

www.studiostyle.sk/dmagic/gallery/
GhostScript/GhostView

www.cs.wisc.edu/~ghost/
UCUGA/Laser Lovers
Promoted by K. Dale Sidebottom and 
Rolf L. Miller. If you want the finest in 
Commodore GEOS printing, check it out!

www.luckyclub.net
C=Hacking
A technical resource for hardcore CBM 
8-bit programming, now edited by 
Stephen L. Judd.

www.ffd2.com/fridge/chacking/
Photos

www.royaltyfreeclipart.com
ConGo
I used this program to convert the photos 
into FLI pictures. It is created and 
maintained by Matthias Matting.

www.editorix.org/congo/
VICE
The ultimate C128 emulator. Nothing else 
comes close.

viceteam.bei.t-online.de
Star Commander
Maintained by Joe Forster. A cool 
interface for maintaining CBM/GEOS files 
on modern platforms.

sta.c64.org
geoZIP
Maintained by Todd Elliott, Werner 
Weicht, Pasi Ojala and Maurice 
Randall. It helps to keep all elements of 
the publication together outside the GEOS 
environment.

www.cs.tut.fi/~albert/Dev/gunzip-geos/



January 2003 Page 2Issue 01 - (c) 2002 By Todd Elliott

   Ever since the VIC-II chip’s (referred to
as VIC in this article) introduction in
January 1982 in the UltiMax computer
marketed in Japan, inquisitive
programmers have continually explored its
varied registers in every way imaginable
in creating truly stunning, spectacular and
uniquely creative demo effects. For twenty
years running, the venerable VIC has
helped propel many demo programmers,
graphicians (pixel artists) and demo crews
to elite status within the Commodore 8-bit
demo scene for their continued brilliance,
cutting-edge innovation and unbridled
creativity. I now introduce full-screen
FLI’s to this demo legend and lore.
   But, what is this ’FLI’ mode? This is a
well-known expansion of the VIC chip
and is standard demo fare. FLI is
shorthand for Flexible Line
Interpretation. Before I delve into this
FLI mode, a brief explanation as to the
inner nature of the VIC chip is warranted.
This chip is primarily responsible for
redrawing the screen 60 times a second on
our North American systems. However, It
has a lot of tasks to do other than just
displaying stuff onscreen. For example,
the VIC has to refresh the local RAM
memory (referred to as RAM in this
article), keeping such contents alive.
   How can the VIC display stuff onscreen?
It is really a microcontroller of sorts,
similar to the 6510/8510 CPU (referred to
CPU in this article) which is the true
brains of the Commodore 64/128 system.
What it means is that most of the time, the
CPU will continually fetch stuff from
memory locations, act on data, set
conditions, stash stuff onto memory
locations, etc. The VIC does similar things
as it will refresh memory, get data from
memory locations, act on such data, stash
such stuff onto the screen.
   There are 200 visible scanlines on our
Commodore 64/128 screens. The computer
can’t read (buffer) in 64,000 different bits
of information and an untold number of
additional color information all at once.
Now, you’ve got the general idea as to the

sheer volume of information that the
computer has to manage in just creating a
single frame on the screen and the
computer has to do it 60 times a second!
The computer has to somehow break this
daunting task down to much smaller and
manageable chunks.
   This job is left to the VIC chip. The VIC
chip has its own internal counters,
addresses, registers, just like what the
CPU has to offer for programmers. The
internal workings of the VIC chip can be
accessed via its registers and can be
manipulated by the CPU through a user
program like GEOS, for instance. The VIC
chip follows an internal sequence of
instructions; It will start outputting its
display at scanline 0 and go all the way

counters, registers, change its memory
location lookups, and read in new video
data from RAM. This way, the daunting
task of updating the entire video screen is
broken up into a very manageable chore of
only eight scanlines for the VIC chip to
follow and this ’eight scanline’ routine is
repeated forty times to fill the entire screen
with a picture.
   Now, if the VIC chip tries to read new
graphics data from RAM, and the CPU tries
to do the same, what happens? The
computer would get locked up or messed up
as two chips are vying for control of the
databus, the critical pathways in the
computer where data flows within. The
CPU is always reading and writing memory
locations in the computer at all times. Both
the VIC and the CPU shares the databus for
each and every machine cycle.
   At certain times, the VIC needs more data
from RAM and how can it coexist
peacefully with the CPU? Enter a new
concept called DMA, shorthand for Direct
Memory Access and is what marries the
VIC to the CPU into one happy union.
   The VIC has the capability to do DMA.
When the VIC chip needs to access the
databus, it effectively disables the CPU
chip. Once that happens, the VIC chip has
now free reign to the databus, and fetches
video data from RAM so that it can render
such data onto the screen. When the VIC
chip is done, it relinquishes control of the
databus and frees up the CPU for it to
resume control of the system.
   This is called a Badline condition and
the VIC will issue a badline on every eight
scanlines of the video screen just so that it
can update itself with new video data for
rendering the next eight scanlines in its
normal housekeeping duties.

down to scanline 262 on NTSC screens,
and only 200 of those scanlines will be
visible by the Commodore user and the rest
of the display is taken up by the borders.
   Depending on how the VIC is configured
via the registers that were set up by the
CPU, it will look up video data from RAM
that is resident in the computer. It will then
calculate this video data, add in color
information and output it to the screen.
This is called housekeeping and the VIC
chip will temporarily stop the system on
every eight scanlines to do so. During this
time, It has to update its internal row

A high resolution FLI logo drawn by Daniel ’DeeKay’ Kottmair of Crest . The 
logo was originally drawn with a thick black border and  it was removed for 
this publication. GEOS is able to use this mode with additional work.

Introducing Full Screen FLI’s for the SuperCPU
Copyright (C) 2002 By Todd S. Elliott

The VIC video chip and the
CPU brains are continually
at odds in your Commodore
64/128. What makes these

two chips coexist peacefully?
One word: DMA.



Commodore Currents SuperCPU Full-Screen FLI Feature Page 3

   Why is it called a ’Badline’ condition?
Because, the CPU is disabled while the
VIC is busy doing its own thing; nothing
else can happen within the computer. Disk
accesses do not happen. Arithmetic
computations do not happen. Many
computer tasks do not happen.
   Leave it to the demo coders to turn a bad
thing into a very good thing, indeed!
Badlines in the VIC are essential for many
demo coders in achieving what seems to
be impossible video tricks and color
combinations. Sometime in late 1980’s or
early 1990’s, enterprising demo
programmers discovered badlines and how
to use them to their advantage in creating
different screen modes. The discovery was
that while the VIC chip’s normal behavior
was to issue a badline on every eight
scanlines, it could be forced to issue one on
every scanline, all 200 of them onscreen.
The programmer would insert VIC DMA
retrigger code to force a badline at any
scanline onscreen.
   Think of this; the VIC chip is forced to do
its internal housekeeping on all 200
scanlines instead of just every eight
scanlines. That means video data can be
fetched on every scanline. The FLI mode
was born. It consists of a simple bitmap
with eight video data matrixes. Each video
matrix corresponds with one of the eight
scanlines and are located in RAM. In FLI
mode, the video matrixes are switched for
each scanline, where matrix one is used
for the first scanline, matrix two is used
for the second scanline, etc. This pattern
would repeat for every eight scanlines.
   Think of it as an expansion of the
standard multicolor bitmap mode, where
there is only one video matrix for the
entire bitmap. Now, in FLI mode, we have
eight video matrixes and the resulting
color possibilities makes for far more
superior pictures. Hence, this mode is
christened as Flexible Line Interpretation
(FLI) video mode, where maximum color
flexibility is given for each scanline.
   I realize I have greatly oversimplified
FLI mode and VIC chip’s badlines. There is
a groundbreaking study of the VIC chip as
outlined in the VIC Article by
Christian Bauer and it is well over 30+
pages in length and is only intended for

hardcore VIC chip programmers.
Interested persons should check out this
website containing the HTML version of
the VIC Article at::
http://www.minet.uni-jena.de/~andreasg/
c64/vic_artikel/vic_article_1.htm

video data from the video matrix and put it
on screen. But, in the first three columns,
the whole system is still essentially shut
down from the transition period. Yet, the
VIC chip will display video data onscreen!
Where is this data coming from?!?
   From the databus, of course! :)
Specifically, the last value still left in the
databus. In the normal course of events, the
CPU will fetch its next instruction from the
databus and intend to execute this
instruction. However, it would get stunned
by the VIC and this instruction is left
hanging on the databus, almost orphaned.
When the VIC badline condition is over,
the CPU gets the orphan instruction back
and acts on it accordingly. This orphan
instruction is what creates the video data in
the first three columns of a FLI screen.
This instruction is supposed to immediately
follow the VIC DMA retrigger code in the
FLI display loop.
   Some creative democoders discovered
this and managed to put in specific 6502
opcodes (instructions) in their FLI display
loops after the VIC DMA retrigger code, to
influence color information for the first
three lines of the FLI screen. This creative
approach doesn’t really solve the first three
column problem inherent in FLI screens. A
programmer just can’t pick any opcode to
influence color information because they
would be executed by the CPU once the
badline is over. Color information comes in
any combination up to 256 values and the
CPU instruction opcodes only number up to
151 variations. The opcode approach to

   But, the forced DMA of the VIC chip in
FLI mode comes with a cost. The VIC chip
has to stun the CPU and that action alone
has to take up some time, where nothing
virtually happens on the computer and is
called a transition period. The internal
registers of the VIC chip is still closed
until control of the databus is transferred to
the VIC chip. Once the CPU is fully
disabled, the VIC chip now assumes
control and opens its internal registers and
starts reading video data from the databus.
This time lag results in the loss of video
capability for the first three columns on the
screen and is called the FLI Bug.
   This is why most FLI graphics screens
always have their first three columns cut
off, devoid of any video data. However, the
VIC chip will display video data in the first
three columns of the screen in FLI mode.
But, what is displayed there? Normally, the
VIC chip, on a badline condition, will get

William 
Shakespeare 
once said, a rose 
by any other 
name is still a 
rose. I certainly 
agree and a rose 
is beautifully 
rendered here in 
multicolor FLI 
mode. The artist 
is unknown and 
probably is a 
graphics 
conversion.

The two warring factions in
your Commodore 64/128 are
the VIC & CPU chips, vying

for databus supremacy. This
kind of war leaves orphans

and these lost children
causes the FLI Bug!



January 2003 Page 4Issue 01 - (c) 2002 By Todd Elliott

putting color information in the first three
columns of the FLI screen is very limited.
   Another creative solution for the FLI Bug
was to put sprites over the first three
columns of the FLI picture. This worked,
but required more exact timing in the FLI
display loop code and took away some
scanlines at the top or bottom of the
graphics screen as they were used for
sprite data themselves. The sprites did not
offer a lot of color flexibility as they could
only be switched every 21 scanlines as
opposed to video matrixes which are
switched at every scanline. Not a lot of
demos used sprites to cover up this FLI bug
with graphics data, but with some
creativity, full-screen FLI displays can be
done with this method.
   A solution is at hand for overcoming the
FLI Bug; allow me to introduce the
SuperCPU! The SuperCPU is a separate
computer and is not affected by the VIC’s
DMA (badlines). Even if the VIC chip
takes control of the databus, the SuperCPU
is not affected and it runs normally, doing
computational tasks at 20MHz. Basically,
when a Commodore 64/128 system is
powered up with a SuperCPU accelerator,
the SuperCPU issues its own DMA and
stuns the CPU that is in the host
Commodore computer. The CPU is
effectively tristated (disabled) for the
life of the SuperCPU currently running.
The CPU never even wakes up again and
remains forever at peace. Of course, once
the SuperCPU is turned off or disabled, the
CPU springs back to life again.

   The VIC chip isn’t disabled and remains
active when the SuperCPU tristates the
CPU. The VIC chip now has free reign of
the databus for its activities and really
doesn’t have to worry about the CPU. But,
the VIC was designed back in 1982 and

the badline is over, so that the SuperCPU
can then access the databus. If the VIC
isn’t active, the SuperCPU goes ahead and
accesses the databus.
   Now, let’s go back to the FLI video display
mode of the VIC chip. Once a forced DMA
(badline) occurs, the databus is seized by
the VIC chip during the transition period.
As explained earlier, the last instruction
opcode still on the databus is passed onto
video memory and displayed onscreen in
the first three columns of the video screen.
But, in this case, the CPU is tristated by the
SuperCPU! There’s no instructions waiting
on the databus for execution by the CPU.
There exists a vacuum on the databus
when a badline condition occurs in the VIC
chip and it  isn’t affected by this anomaly.
   Now the magic happens with the
SuperCPU! The SuperCPU can do its DMA
and stash values on the host computer’s
databus, filling this vacuum. It is fast
enough to stash a value onto the databus
after the DMA retrigger code is done in the
FLI display loop. In fact, it is fast enough to
stash three values onto the host
computer’s databus, and the VIC chip, no
wiser, fetches video data from the databus
in this transition period to fill the first three
columns of the FLI screen before adjusting
to its normal housekeeping chores and
fetching video data values from RAM.
   Viola! A full-screen FLI mode is now
readily achievable on the VIC chip and we
have the SuperCPU to thank for allowing
us to have such a capability. The SuperCPU
truly expands the horizons of the VIC chip
because the SuperCPU can stash values on
the databus so quick that the VIC chip
responds immediately.  Thanks goes to Per
Olofsson (MagerValp) for pointing me in
the right direction regarding the databus.
   Just what a full-screen FLI mode on the
VIC can do for our SuperCPU equipped
Commodore setups? For starters, having a
full-screen mode opens up avenues for
more color possibilities for our graphics
onscreen. Let’s take the standard multicolor
mode. You know this screen mode as it is
very common in games and drawing
programs. The screen resolution is 160x200
pixels (dots) and is broken up into 1,000
blocks of 8x8 pixels. In each block, up to
three colors can be independently selected.

wasn’t designed for a possible future
accelerator upgrade in the future, which
turns out to be the SuperCPU. The VIC still
remains a creature of habit, popping up on
the databus on every eight scanlines, doing
its housekeeping, displaying video data,
and stuns the CPU. The CPU is already
tristated by the SuperCPU, so the VIC’s
attempts to disable it results in no action.
   The SuperCPU, while is a computer in its
own right with its own 65816 CPU unit,
lacks some features. For example, it
doesn’t have customized chips needed to
read the keyboard, to communicate with
disk drives, and not the least of all, to
display video data onscreen. The
SuperCPU has to access the host
computer’s databus and it does so by DMA.
When the SuperCPU tries to access the
host computer’s databus, it checks VIC
activity; If the VIC is currently active on
the databus, the SuperCPU has to wait until

The marriage 
between the VIC 
and the CPU 
chips forms the 
uneasy union of 
the Commodore 
64 and 128 
computers. This 
is a high- 
resolution FLI 
picture and is 
converted by 
GoDot.

The SuperCPU upsets the
delicate balance between the
VIC & CPU chips’ databus
struggles, creating a power
vacuum. The SuperCPU fills
this vacuum & forcefeeds the
VIC a full-screen FLI mode!



Commodore Currents SuperCPU Full-Screen FLI Feature Page 5

   However, one color is common in every
block of the multicolor screen and is
referred to as the background color.
Theoretically, a program (like GoDot) or a
graphician could optimize this background
value, carefully choosing the most
common color for this background. This
way, designating the most common color
for the entire bitmap frees up color
possibilities in all blocks of the screen.
   In multicolor FLI mode, the screen
resolution is still the same, but is broken up
to 8,000 blocks of 8x1 pixels. The same
color restrictions still apply, but for only a
block that is 8x1 pixels in size. So, color
possibilities increase by a factor of eight as
8,000 blocks can be manipulated. However,
there is still one color that is common to all
8,000 blocks on the screen and is still the
background color. Graphics programs and
artists still has to optimize for this mode,
carefully choosing a single color that is
most often used in the screen for
maximum color flexibility for those 8,000
blocks of graphics data.
   But, this background color can be
changed on each and every scanline, all
200 of them onscreen. Why restrict your
graphics creation to a single optimized
value that applies to the entire screen
when you can pick up to 200 values, and
each one of those optimized values would
only apply for their respective scanlines?
Many demo programs and some graphics
drawing programs do just that. Color
flexibility is best maximized when the
background value can be changed at every
scanline of the screen, giving more color

freedom for those graphical building
blocks of the multicolor screen.
   This feature of changing the background
value for each scanline does not work too
well in FLI mode, unfortunately. The
background color value will bleed through
the first three columns of the FLI Bug,
appearing as colored lines, compromising
the aesthetic beauty of the graphics screen.
This ’bleed-thru’ can be covered up with
sprites, though, and some demos and
graphics programs do that. But, we now
have a full-screen FLI mode and the
background color value will show through
in the first three columns normally as it
would do for the rest of the screen!
   Having a full-screen FLI mode for our
SuperCPU’s truly enables us to have fully
optimized graphical masterpieces in which
the entire 160x200 screen area is fully used
and full color optimization is used for each
and every one of the 8,000 graphical

the entire screen and are fully optimized for
superior color fidelity. I’m not saying that
Steve Judd and/or Adrian Gonzalez will
improvise their SuperCPU JPEG viewer
along those lines, but to point out truly
creative and artistic possibilities that now
exist for our SuperCPU’s.
   Another possibility that full-screen FLI’s
offer for our SuperCPU’s is the ability to
have a high-resolution screen with better
color depth than is possible for a regular
high resolution bitmap. The screen
resolution for a regular high resolution
bitmap is 320x200 pixels and is broken up
into 1,000 blocks of 8x8 pixels. In each
block, up to two colors can be independently
selected. This is what Wheels’ (GEOS) 40
column screen uses for its display.
   But with full-screen FLI mode, the entire
320x200 screen is now broken up into 8,000
blocks of 8x1 pixels! In each of those 8,000
blocks, up to two colors can be
independently selected, multiplying color
possibilities by a factor of eight. Imagine
browsing the Internet using the WAVE in
such a full-screen high-resolution FLI
mode. The 80 column screen is capable of
similar color freedom, but at the expense of
flickering. (Think I*Paint 128 and you’ll
know what I’m talking about.) Wheels
SC could implement a special mode for the
40 column screen, so that Wheels can
display in either regular high resolution
mode or FLI high resolution mode in 40
columns. Again, Maurice Randall can
choose to implement this mode or not. I’m
just showing what possibilities that a
full-screen high resolution FLI mode can
offer for GEOS usage.
   I will work on integrating this full screen
FLI mode for my dotView program. This
program is a true switch-hitter, running for
Wheels OS, in either 64 or 128 versions and
in either 40 or 80 column modes. My goals
for this program is to display a single 4Bit
graphics file into any screen mode that the
VIC chip is capable of supporting, all from
within the comforts of the Wheels GUI. 
   The possibilities that a full-screen FLI
mode, either in high resolution or
multicolor format, are numerous indeed for
our SuperCPU’s and its graphical future
with the VIC chip has never shone so
brighter.

building blocks that makes up such
screens. Add interlace mode and you’ve got
fully optimized color IFLI screens at
320x200 resolution. Imagine viewing JPEG
files using Steve Judd’s JPEG viewer
for the SuperCPU, graphics which occupy

A picture 
conversion of 
the talkative 
parrot. What 
secrets will he 
spill next of the 
SuperCPU? 
This image is in 
multicolor FLI 
mode.

The graphics potential of the
full-screen FLI mode for the

SuperCPU is promising.
Imagine browsing the

Internet in color via the
WAVE browser, or viewing a
JPEG in full color fidelity.



Page 6January 2003 Issue 01 - (c) 2002 By Todd Elliott

   The ’FLI Bug’, where the first three
columns of a FLI screen are essentially
unusable, can be squashed with the help of
a SuperCPU.  I won’t go into great detail
on FLI, as it has been well-documented
elsewhere, but I’ll begin with a short
summary to get us all up to speed.  I refer
you to Albert ’Pasi’ Ojala’s excellent
coverage of the FLI mode in C=Hacking
#4. Pasi also proofread this article.

A Three-Minute Summary of the FLI mode
   The VIC-II chip asserts a badline when
it needs to access the databus and fetch
character data or videomatrix data. It was
discovered that the VIC-II chip can be
manipulated by its vertical scroll register at
$d011 (SCROLY) to induce a badline at
any given rasterline. By having a badline at
every visible rasterline, the program can
manipulate $d018 (VMCSB) to point at
the right videomatrix to achieve the
maximum flexibility of colors given to a
multi-color screen.
   Unfortunately, when a program forces a
badline via SCROLY, the BA (Bus
Available) line in the computer goes high,
and for three cycles the 6510/8510
processor has to finish its write operations
or halt its read operations before the BA
line is released to the VIC-II chip. The
maximum number of successive write
operations is three, hence the 3-cycle
delay. It is in those three cycles that the
VIC-II does not fetch video matrix data to
fill in the first three columns and causes
the ’FLI Bug’.
   I wish to stress that in those first three
cycles, when the BA line is high, the
6510/8510 processor is still active and
can complete write operations. It isn’t fully
shut down. After the badline retrigger at
STA SCROLY, the code following it is
fetched on the databus and is ready to be
executed by the 6510/8510 processor. When
BA is high, the VIC-II will reference the
value on the databus as videomatrix data
and display it in the first three columns of
the screen. The actual instructions that
follow the STA SCROLY in the FLI loop
constitutes the video matrix data for the
first three columns of the screen.

Enter the SuperCPU!
   Normally, a VIC-II chip access is only
possible every 4 cycles. The SuperCPU can
access the VIC-II chip in 1 cycle
(1MHz) intervals, making cycle to
cycle changes possible within the VIC-II
chip. More importantly, the SuperCPU
tristates the 6510/8510 processor inside
the host Commodore computer (which is a
fancy way of saying that you can
disconnect the processor from the system
without physically removing it).
   When a forced badline retrigger occurs
with a STA SCROLY in a FLI loop under
the SuperCPU, the BA signal inside the
host Commodore computer goes high. But,
the SuperCPU runs asynchronously and
really doesn’t have to pay attention to the

host Commodore as it runs code after the
STA SCROLY. In fact, the SuperCPU will
execute code even if the VIC-II badline is
in full swing inside the host Commodore
computer.
   I knew that the instruction opcodes left
on the databus after the STA SCROLY
made up the video matrix data for the
VIC-II chip for those first three columns
of the screen. But I wondered how this was

possible in a SuperCPU configuration
because there would be no instruction
opcodes left hanging on the databus inside
the host Commodore computer. After some
discussions with Per Olofsson
("MagerValp"), he suggested that
writes/reads to the i/o area will force a
value to be put on the databus.
   This is where the magic begins, when the
FLI loop forces the SuperCPU to write to
the i/o area of the host Commodore after
the forced badline retrigger at STA
SCROLY. The SuperCPU will note that the
BA signal is still high, so it can still access
the databus and stash values there via
DMA. This BA high signal will last for 3
cycles, enough for the SuperCPU to stash
three values onto the databus.
   The 6510/8510 is still tristated by the
SuperCPU, and there’s nothing on the
databus after the forced badline retrigger at
STA SCROLY. Normally, the 6510/8510
CPU shares the databus with the VIC-II for
each machine cycle. With the 6510/8510
CPU out of the equation, the SuperCPU can
stash a value onto this shared bus on the
CPU half of this machine cycle and the
VIC-II chip will see it in its other half of
the machine cycle.
   However, the databus is only eight bits
wide. The VIC-II chip fetches video matrix
data and color ram data 12 bits at a time.
The SuperCPU can force values onto the
databus during the first three cycles after
the forced badline retrigger, but on each

C=Hacking Full-Screen FLI Article

It is in those three cycles
that the VIC-II does not

fetch video matrix data to fill
in the first three columns
and causes the ’FLI Bug’.

This
multi
color FLI
logo was
drawn by
Pawel
’Valsary’
Petkowicz
of the
Elysium
demo
group.



Page 7Commodore Currents Full-Screen FLI Feature

cycle the last four bits belonging to Color
RAM would not be fed to the VIC-II chip.
Only pixel values of %10 and %01 can be
individually selected in multicolor FLI
mode, while %11 pixel values cannot be
individually set for those first three
columns of the screen. The high resolution
FLI mode does not suffer from this
problem because it does not use color RAM
for color attribute information.

Full-Screen FLI in practice
   Let’s get down to the nitty gritty. The
Write I/O Approach requires three
200-byte tables, corresponding to each
column. Each value on those tables
correspond to each visible rasterline. For
example, the first byte of each table
corresponds to rasterline 50, the second
byte of each table corresponds to rasterline
51, etc. The first table contains values
needed for the first column of the screen,
the second table contains values needed
for the second column of the screen, etc.
   In the FLI display loop prior to the STA
SCROLY command, the current rasterline
is used as an index to all three tables. The
values are then fetched from the tables and
inserted into the code that follows the STA
SCROLY command using self-modifying
code techniques. When the STA SCROLY
happens, the code that immediately
follows it starts writing the values onto the
databus, all three in a row to complete the
first three columns of the screen.
   There is a disadvantage with this
approach. It requires that three 200-byte
tables be specially constructed and stored
somewhere in memory that is not mirrored
by the SuperCPU. A routine would have to
read in a FLI graphics file, extract
information from the first three columns
and store it into their respective 200-byte
tables.
   Pasi Ojala came up with a graph
depicting the SuperCPU interacting with

the VIC-II in action, showing what
happens after the forced DMA
retrigger at STA SCROLY. The ’LDA
#$xx’ would have been modified earlier in
the FLI routine (before the STA SCROLY)
using self-modifying code. Here is the
relevant source code which takes up 4
machine cycles inside the host
Commodore computer.

sta scroly ; abcd
; d = write Y to SCROLY on 1MHz
; bus CPU half - Mach. Cycle #1

lda #$00 ; ef
sta $d022 ; ghij

; j = write 1 to $D022 on 1MHz bus
; CPU half - Mach. Cycle #2

lda #$00 ; kl
sta $d022 ; mnop

; p = write 2 to $D022 on 1MHz bus
; CPU half - Mach. Cycle #3

lda #$00 ; qr
sta $d022 ; stuv

; v = write 3 to $D022 on 1MHz bus
; CPU half - Mach. Cycle #4

   There are the two shared halves
consisting of a machine cycle inside the
host Commodore bus, and by stashing
values onto the databus, this value is
carried over to the VIC-II half and is read
as videomatrix data during the first three
columns of the FLI screen.
   Values on the databus which is carried
over onto the VIC-II half of the databus:

DMA : DMA condition detected by VIC-II
col0 : colors for column 0 read, gets the

: value 1 put into the bus by SCPU
col1 : colors for column 1 read, gets the

: value 2 put into the bus by SCPU
col2 : colors for column 2 read, gets the

: value 3 put into the bus by SCPU

An alternative approach bites the dust
   The SuperCPU can also fetch values onto
the databus by reading from the I/O region.

If a coder were so inclined to use a ’Read
I/O Approach’, where is a program going
to find 600 free bytes in the i/o region at
$d000-$dfff? The idea is to force the
SuperCPU to do a read on the databus via
DMA and this can’t be done with mirrored
locations similar to the ones used in those
VIC optimization modes. When a
SuperCPU reads a value from mirrored
memory, it does so from its local RAM and
not the RAM that is inside the host
Commodore computer. However, if the
SuperCPU reads from the I/O block at
$d000-$dfff, it will read a value from inside
the host Commodore computer using DMA.
   Unfortunately, this approach did not
work when the BA line went high inside
the host Commodore computer and is
unworkable for a full-screen FLI mode. The
SuperCPU stops for reads if BA is high, just
like its 1MHz 6510/8510 counterpart.

Other Considerations.
   There were some interesting
observations while debugging the
full-screen FLI routines. The full-screen
FLI routines were originally inspired by
Robin Harbron’s IRQ-based FLI
routines.  Because they are driven by an
IRQ, the CPU is still available for normal
computational tasks.
   When all three videomatrix values are
written to after the STA SCROLY in the
line-interruptible FLI routine, the
IRQ must then exit quickly with the
restoration of the registers.  It’s a good idea
to avoid writing to any mirrored location
or read/write to any I/O region
($D000-$DFFF), since the SuperCPU will
have to wait for VIC to finish with the data
bus.
   Using a raster IRQ will naturally lead to
trouble, since cycle-exact timing is needed,
so a CIA timer is used.  The timer may be
set to synchronize a PAL or NTSC
machine. Then in the FLI routine the timer



Page 8January 2003 Issue 01 - (c) 2002 By Todd Elliott

can be checked and indexed into a table of
preset timing values so that the forced
badline retrigger at STA SCROLY will
always happen at the right time on the
screen, no matter what the SuperCPU is
doing when the VIC-II interrupted it with
an raster IRQ. Thanks goes to
Ninja/The-Dreams (aka Wolfram
Sang) for tips on how to create a stable
line-interruptible FLI routine using timers.

Source code
   Without further ado, here is the source
code. This source code was used in the
Santa Claus FLI Demo for Wheels
OS. This code will run in either
Commodore 64 or 128 computers and in
either PAL or NTSC systems. It did take a
lot of tweaking at Points #1, #2, #3,
#4, & #5 as I tried to perfect the routines
as closely as possible. The full source code
for the Santa Claus FLI demo can be
supplied via email upon request. It is in
Concept+ (geoProgrammer) format.

; Wedges the full-screen FLI interrupt
; handler in Wheels systems.
; Thanks goes to Robin Harbron for the
; idea of a line-interruptible FLI routine.
InstallFLI:

; Installs the FLI routine
jsr ClearMouseMode

; Turn off the mouse.
sei
lda CPU_DATA

; Save 6510/8510 Location #$01.
sta r6510
lda screenMode

; Check computer.
bne 2$

; Take branch in 128 mode.
lda #IO_IN
.byte $2c
2$: lda #%00110111; for 128 mode only
sta CPU_DATA
lda vmcsb

; Save original video bank info
; for Wheels.

sta oVMBmp
lda scroly ; save screen Y axis
sta yaxis
MoveW $fffe, oldVector

; Saves the old Wheels IRQ
; vector.

lda #<fli ; Sets up fli raster.
sta $fffe

; At the IRQ interrupt vector.
lda #>fli
sta $ffff

sta scroly
lda #1
sta vicirq ; Ack raster ints.
lda oVMBmp ; Restore original
sta vmcsb ; video bank info for
lda r6510 ; Wheels.
sta CPU_DATA

; Restores 6510 Port #$01
cli
jmp StartMouseMode

; Start the mouse on.

fli: ; The actual FLI interrupt routine
; lies here.

pha
.byte $da ; phx
.byte $5a ; phy
php ; Save CPU flags.
; Point #2
ldx #$03

; #$0f for PAL SuperCPU
; systems.

3$: dex
bpl 3$
lda raster
tax
ldy colOneClrs,x

; Get colors for the first three
; columns.

sty mark4+1
ldy colTwoClrs,x
sty mark5+1
ldy colThreeClrs,x
sty mark6+1
inx
; Point #3
cpx #$f9 ; Have we reached
bne 1$ ; scanline 249?

; Point #1
lda #$31

; Trigger the IRQ request
sta raster ; At rasterline 49.
lda scroly
and #$7f

; Clear bit 7 of raster register.
sta scroly
lda #1
sta vicirq ; Ack raster ints.
cli
rts

RemoveFLI:
; Removes the FLI routine

sei
MoveW oldVector, $fffe

; Restores the old Wheels IRQ
; vector.

lda #$fb
; Trigger the IRQ request

sta raster ; At rasterline 251.
lda yaxis

; restore screen Y axis
and #$7f

; Clear bit 7 of raster register.

When the STA SCROLY
happens, the code ... starts
writing the values onto the
databus, all 3 in a row to

complete the first 3 columns
of the screen.

The
Black
Mail
demo
group
coined
the FLI
mode
and
used it
in their
ground
break-
ing
demo,
’Dutch
Breeze’.



Page 9Commodore Currents Full-Screen FLI Feature

; Point #1
ldx #$31

; Restart IRQ at rasterline 49.
1$: stx raster
; By this time, the raster interrupt register
; is incremented by one, and will re-trigger
; the same fli routine. This way, it is fully
; line-interruptible & frees up SCPU time.
ldy #$01
sty vicirq ; Ack raster ints.
and #$07
tax ; Mask out lower three bits.
ldy tabd018,x

; Use preset values for vmcsb.
lda d011tab,x

; Use preset values for scroly.
sty vmcsb ; Select video matrix.
sta scroly ; Forces the badline.
mark4: lda #$00 ; Stores a video
sta $d022 ; matrix value onto

; the first column.
mark5: lda #$00 ; Stores a video
sta $d022 ; matrix value onto

; the second column.
mark6: lda #$00 ; Stores a video
sta $d022 ; matrix value onto

; the third column.
plp ; Restore CPU Flags.
.byte $7a ; ply
.byte $fa ; plx
pla
rti
; Do NOT use any memory accesses to the
; host CBM databus in this part because it
; will be blocked by the VIC-II badline.
; Point #4
tabd018: ; Preset video matrix

; values.

.byte $78,$08,$18,$28,$38,$48,$58,$68
; NTSC systems

;.byte $08,$18,$28,$38,$48,$58,$68,$78
; PAL systems

d011tab: ; Preset VIC DMA
; retrigger values.

.byte $38,$39,$3a,$3b,$3c,$3d,$3e,$3f

ChkAbortKey:
; Checks the RUN/STOP key

LoadB $dc00, #$7f
; checks STOP key

3$: asl $dc01
; Check for the RUN/STOP key. This
; also synchronizes the line-interruptible
; FLI routine.
bcs 3$ ; Branch if it isn’t
rts ; pressed.

prep3Cols:
; Prepares the first three columns of the
; FLI screen. Ideally, a FLI file would be
; loaded in and this routine would then be
; called to set up the three 200-byte tables
; corresponding to each column, covering
; the first three columns of the screen.
lda #$40
sta mark1+2 ; Prepare the marks.
sta mark2+2
sta mark3+2
ldy #$00
sty mark1+1
iny
sty mark2+1
iny
sty mark3+1
php
sei

lda screenMode
beq 1$ ; take branch in 64
lda $ff00 ; mode.
pha ; save 128 config.
lda #%01111110; select RAM at
sta $ff00 ; $4000
1$: ldy #$00
ldx #$07
; Use self-modifying code to create three
; 200-byte tables for each column of the FLI
; screen and each value is indexed by the
; scanline in the FLI routine.
; Point #5
mark1: lda $4000
sta colOneClrs+49,y
mark2: lda $4001
sta colTwoClrs+49,y
mark3: lda $4002
sta colThreeClrs+49,y
clc ; use +48 for the
lda mark1+2 ; column offset in
adc #$04 ; PAL systems.
sta mark1+2
sta mark2+2
sta mark3+2
iny
dex
bpl mark1
sec
lda mark1+2
sbc #$20
sta mark1+2
clc
lda mark1+1
adc #$28
sta mark1+1
tax
inx
stx mark2+1
inx
stx mark3+1
lda mark1+2
adc #$00
sta mark1+2
sta mark2+2
sta mark3+2
cpy #200
bne mark1-2
lda screenMode
beq 2$ ; take branch in 64
pla ; mode.
sta $ff00 ; restore 128 config.
2$: plp
rts

A bunch of
F-16’s fly the
skies. This is
a multi-color
FLI picture
converted
from a photo.



Page 10January 2003 Issue 01 - (c) 2002 By Todd Elliott

.ramsect $1000
; All column colors are referenced by
; scanline.
colOneClrs:
; Column one colors of the FLI screen.
.block256
colTwoClrs:
; Column two colors of the FLI screen.
.block256
colThreeClrs:
; Column three colors of the FLI screen.
.block256

Hopefully the full-screen FLI possibilities
that the SuperCPU can now unlock will
bring forth cool software for our
SuperCPU’s and tons of ’eye candy’.

A seawolf submarine begins its descent into the deep waters; A multi-color FLI
picture converted from a photograph.

This is a multi-color FLI picture drawn by Pawel ’Valsary’ Petkowicz of the Elysium demo group, saying so long to the
Commodore Currents issue with a bang!


