
Godot: In The
Eye Of The
Beholder

A Review By Todd S. Elliott

Page 1Commodore Currents The GoDot Report

In this second issue of
Commodore Currents, I wish to
shine the spotlight on GoDot, which is
still actively developed and supported
by its author, Arndt Dettke.
Graciously, Arndt Dettke has
assisted in proofreading the review for
technical accuracy. Thanks goes to
Bruce Thomas for additional
proofreading.

Just what is Commodore
Currents all about? This publication
is primarily a vehicle for reprinting all
of my articles I’ve written for various
Commodore oriented publications. In
a true Commodore hobbyist fashion, I
publish this endeavor via Wheels,
geoPublish, geoWrite and
PostPrint II/III and use the power of
PostScript. However, I will be using
a mainstream computer to do some
graphics, such as the Commodore
Currents logo, grabbing screenshots
of actual Commodore 64/128 screens,
GhostScript for the PDF conversion,
GhostView for the layout proofing.
This is Commodore GEOS printing
at its finest!

For this issue, I’ve selected a
comprehensive review I’ve originally
submitted to the July 2001 LUCKY
Report, one of the premier
Commodore GEOS publishing efforts
edited by K. Dale Sidebottom. The
LUCKY Report has ceased
publication, as Dale and Rolf L.
Miller of the UCUGA users group
now undertake the Commodore
Digest (Commodore GEOS)
publishing endeavor.

In 2003, there is quite a bit of
Commodore hobbyist activity going on
regarding GoDot. In addition to
programming new GoDot modules

and bug-fixing GoDot, Arndt
Dettke (and other authors) have begun
to produce GoDot tutorials for
publication within the Commodore
Digest. For a nominal fee, The
LUCKI Club will distribute a
complete GoDot disk for those who
prefer the convenience of having the
real disk media instead of downloading
it.

For some time now, Matthias
Matting has supported GoDot’s 4bit
files for his ConGo utility for
mainstream computers running in the
Windows environment. There is a
program called XnView for
mainstream computers running
Windows and LINUX, that can also
view 4bit files and convert them to
modern graphical formats.

Continuing the 4bit theme, I have
developed a Wheels (GEOS) utility,
called dotView, which can view 4bit
files in multicolor graphics splendor.
Please check out the bibliography at the
end for website links to these programs
and more.

About the future of this
publication from the editor:
Commodore Currents, for the next
few issues, will contain reprints from
my Commodore article repository.
While I am not as prolific as other
notable Commodore scribes, I hope to
organize my content over several issues
on a semi-regular basis. For the time
being, Commodore Currents will
be made available as a PDF file, freely
downloadable on the Internet.

Once I have a 11x17 printer, I will
seriously examine publishing
possibilities for a newsletter or
magazine giving the usual breadth and
depth of leading Commodore concepts
out there. Such coverage, not
necessarily limited to, would
emcompass GEOS, demos,
programming, with an eye towards
using the machines as a main hobby
instead of waxing a nostalgic look like

those ’retro’ magazines usually do. Of
course, since this would be published
in-house, there’s no printer delays, etc.
Still, this publication would be a
hobbyist endeavor and the promise of a
prompt publishing schedule is one that
cannot be kept, hence I hope to
undertake it on a semi-regular basis.

This publication, while not perfect,
strives to publish material that recognizes
all relevant intellectual properties as
belonging to their respective authors.
This publication recognizes all valid
trademarks as belonging to their
respective holders and no infringement is
intended.

To the extent practical, I have
secured some permissions from the
author(s) to reprint the relevant works
here. If you, the reader, possess an
intellectual property interest in any
material presented in this publication,
please let me know of any objection(s)
you may have.

I have included a short bibliography
here to give due credit(s) to various
authors and other program(s) that have
contributed to the successful creation of
this publication.
Wheels OS
SuperCPU
All by Maurice Randall at:

www.cmdrkey.com
geoWrite v2.2
geoPublish v1.1
All original code by Berkeley
Softworks and licensed to
CMDRKEY. All code modifications
done by Todd S. Elliott.
GoDot
By Arndt Dettke and Wolfgang
Kling. Arndt now maintains GoDot.

www.godot64.de
GhostScript/GhostView

www.cs.wisc.edu/~ghost/
(Continued on Page 10)

Page 2November 2003 (c) 2003 By Todd Elliott

The Past and Present of Commodore
Computer Graphics

One of the Commodore 64’s
selling points back in its halcyon days
of the Eighties was the fact that it had
excellent color graphics. Almost
immediately after the Commodore 64’s
introduction, graphic painting programs
began to appear, most notably
Doodle!, KoalaPainter and
geoPaint. With all of these painting
tools at a user’s disposal, Commodore
64 users began to create many screen
masterpieces.

Commodore magazines at the time
held contests for best artistic creations
for the Commodore 64 and even held
regular monthly galleries of graphical
pictures. Many people made a name for
themselves in Commodoredom for their
pixel artistry such as Wayne
Schmidt, Walt Harned and Daniel
’DeeKay’ Kottmair.

That was then; This is now. The
art of computer graphics have evolved
and expanded in unforeseen directions
in the past twenty years of the computer
evolution. Gone are the days of
drawing and creating computer
graphics. Rather, computer users of
modern computing platforms are
processing graphics instead of creating
them.

Before I lament the lost art of
creating computer graphics, it is nigh
time that computers are finally
harnessed with their vast computing
potential in processing such graphical
creations. Indeed, it is difficult to create
graphics freehand just using a mouse,
joystick and/or keyboard. It is far more
simpler to process existing graphics
and in doing so, fully maximizes and
taxes such computer hardware.

Waiting for GoDot
Ten years ago, such a program

was created for the Commodore 64 that
allowed the users to process graphics
as well as create them. It is called
GoDot and was released on a
piecemeal basis in the pages of the
German magazine, 64’er. Each issue
of 64’er would have a module or two
for GoDot and would have a tutorial as
well. Over a period of time, GoDot was
a fully realized program for the
Commodore 64 that was rich in
features and abilities.

However, an English manual was
needed in order to market such a
program. I do not mean to disparage
CMD; Obviously, they made a good
effort in porting English documentation
for GoDot and producing it in their own
style. But they only made a perfunctory
manual, describing the functions of the
GoDot main user interface and a library
listing of modules germane to GoDot.
Oh, there was a three page tutorial.

Where were all of those
supplemental prose extolling the virtues
of image processing in lieu of image
creation? Where were illustrations,
screen shots and writings which would
inspire creativity in a Commodore user
to immediately fire up GoDot and
process/create graphics? Where were all
of those tutorial articles that were
piecemealed through the pages of the
64’er magazine? Arndt Dettke stated that
he would have to translate many of the
tutorials into English and such work
would have raised the cost substantially
for CMD in marketing such a program.
Such functional and business-like
documentation has led to several
misconceptions about GoDot which has
effectively impeded its acceptance in the
North American classic Commodore
community.

Deconstructing the Myth of GoDot
First of all, GoDot, while it can

create graphics, is not really suited for
this kind of task. In fact, a module
called PixelEdit was released nearly
ten years after GoDot’s inception and
was produced only at the urging of a
North American Commodore user,
Hugh McMenamin. There are many
drawing programs that will run (draw!)
circles around GoDot in creating
graphics.

But, many users in North America
have never heard of it or did not fully
appreciate the power that carries with
image processing. We were still
creating graphics, most often
laboriously by hand via the
mouse/joystick as opposed to
processing them. Thankfully, CMD
realized the marketing potential of a
fully featured program and made plans
to market it to the North American
Commodore public.

Amazingly, despite its launch in
the pages of the German 64’er
magazine, GoDot’s user interface was
written in English, no work was
needed to be done for the North
American audience. The author, Arndt
Dettke, had big dreams for GoDot,
intending it to be used all over the
world.

The GoDot Report
Copyright (C) 2001 by Todd S. Elliott

Modern day computing
platforms are more often

’processing’ graphics
rather than ’creating’

them.

Page 3Commodore Currents The GoDot Report

Secondly, another misconception
about GoDot is that it can only convert
graphics. This was my conclusion and
observations about GoDot and its CMD
marketed English manual. I could load
in graphical formats that were
commonly found on other modern
computing platforms and convert them
to the interlaced resolution format of
our Commodores, despite the fact
GoDot can do much more than that.
Again, there are dedicated programs for
the Commodore 64 that can do the
conversion job like geoGIF, iPort for
the 128, for example.

Rather, GoDot is an image
processor above and beyond anything
else. It can process existing graphics,
modify them, apply complex
mathematical formulas, create effects
and many more. While not in the class
of Photoshop (for Windows/Mac)
or GIMP (for LINUX), GoDot does
the job very well! GoDot, not
surprisingly, given its enormous task in
processing graphics, benefits greatly
from the increased computing power of
the SuperCPU.

With respect to the North
American Commodore userbase, we
have been creating graphics for so long
that all of a sudden, a very ’new’
concept of processing graphics is now
present in such a program like GoDot.
There has been some growing pains
and some Commodore users began to
accept such a paradigm shift towards
processing graphics on their classic
computers. The acceptance of such a
program has been very slow and has
baffled GoDot’s main advocate, Arndt
Dettke. Despite that, Arndt Dettke has
gone beyond the call of duty by
offering excellent support and rapport
with many of the North American users
by creating many modules for GoDot
based on our suggestions.

Like Postscript printing on the
Commodore, it truly has taken a full
decade for the North American classic

Commodore computing scene to begin
warming up for such revolutionary
changes and concepts in how they
operate their computers. GoDot is of no
exception and I feel that this program is
truly one of a kind for the Commodore.

foundation for image processing. The
4bit format merely shows the brightness
levels of the graphical bitmap image. All
pixels in a 4bit bitmap image are always
on and have a brightness level assigned
instead. In a conventional Commodore
graphical bitmap, a pixel is where it’s on
and has a color assigned to it and
appears onscreen, and a pixel where it’s
off would not appear onscreen. This is
not the case with GoDot.

This brightness level within the 4bit
format is limited to sixteen different
levels, going from a value of 0 (black)
all the way to 15 (white). It is on a
luminance basis with colors ordered on
according to their luminance values. This
is also similar to a gray scale, where if
you use a B&W monitor hooked up to a
Commodore 64 using GoDot and
viewed its palette, you would see these
colors indexed with varying shades of
gray. This brightness scale is smooth
and pleasing in appearance to the naked
eye. Keep in mind that this is an internal
format for GoDot’s own use.

One final word about this
brightness scale; Have you ever
wondered how to describe a color to
someone who has never seen them
before or are totally blind? You would
resort to analogies or known references
in trying to describe such colors. The
computer is of no exception. It does not
know any colors. What the computer
does understand is mathematics.
Mathematics is commonly used as a very

The nitty-gritty details
behind the images

Let’s get into the inner workings
of GoDot so that we all can have a
better understanding as to what image
processing is all about and why it is
important for the Commodore 64/128
computers to enjoy such benefits. The
Commodore 64 computer itself has its
own graphical bitmap formats; Yet,
strangely enough, GoDot, a native
Commodore 64 program, eschews
such formats and implements its own
format for internal image processing
operations, the 4bit graphical format.
You could be more accurate to say that
GoDot is a 4bit image processor which
runs on the Commodore 64 rather than
a Commodore graphic image
processor!

This 4bit format is the linchpin of
which GoDot bases its entire

Left: GoDot as
it appears in
the eye of the
beholder.

Bottom right:
GoDot, a
sleeping
beauty?

GoDot, while it can
create graphics, is not
really suited for the

task. In fact, the only
module designed to

create an image is called
mod.PixelEdit.

Page 4November 2003 (c) 2003 By Todd Elliott

effective tool in describing the
unknown in our modern world. This
brightness scale is fully indexed from 0
to 15 and can be easily manipulated and
understood by the computer with sheer
mathematical brute force.

GoDot in action
Now, this is where I hope to

unlock your creativity and force you to
think out of the breadbox, go beyond
your Commodore’s abilities in doing
so. The Commodore computer is a
computer with many possibilities for
input and output. One main output is
the screen, of course and let’s focus
our energies there.

The standard Commodore
multicolor screen that is commonplace
in many games, demos and painting
programs is a very simple graphical
format with many restrictions and
tradeoffs in achieving the desired
graphical effect. This screen can only
support up to 4 colors in a single 4
pixel by 8 pixel cell on a screen. The
problem is that the internal 4bit format
can support up to sixteen brightness
values (represented by colors) in a
single 4x8 cell on a screen! How is
GoDot going to display the contents of
the 4bit data onscreen in a multicolor
format?

First phase ---> Optimization
First of all, GoDot tries to

optimize brightness levels in a single
4x8 cell. It does so by creating a
histogram or a running count of
brightness levels found in a 4bit file.
By process of elimination, it chooses a
single color that best supports the entire
multicolor screen. This color would be
assigned to the background color. This
is done on the first pass through the
4bit file. On the second pass, further
color optimization & counting is done
on each and every 4x8 pixel cell to
come up with three more color
combinations unique to that cell. There
are 1000 such cells to process. All of
this ’brightness’ counting and building
the histogram takes place internally.

through and assigns to them pixel values
of which would be outputted towards the
screen. It compares the 4bit data that is
currently being analyzed against the 4
optimized brightness values it had
already calculated in a histogram table
unique to that 4x8 pixel cell. If there is a
direct match, a pixel value is generated.
But, what if there is no match?
Remember, a 4bit data file can have 16
brightness values in a 4x8 cell as
opposed to the Commodore’s multicolor
standard of 4 colors in a 4x8 cell. So,
there will be a loss in color depth in such
analysis, where there are images in the
4bit data that provides more than 4
colors per cell.

This analysis stage is what I like to
call the error correction stage. As GoDot
progresses through the 4bit datafile, it
will encounter such color errors due to
4bit values being analyzed and that they
are not one of the four most optimized
values. Such errors cannot be ignored
and GoDot tries to correct such errors
throughout its analysis of the 4bit data.
But, just how does such error correction
occur? Would the human eye notice?

This is one of the principal reasons
why GoDot adheres to a brightness scale
of 0 to 15 instead of conforming itself to
stock Commodore colors. In correcting
such errors, GoDot uses mathematics in
arriving at the nearest valid brightness
value from the 4 brightness values as
found in the optimized histogram to
replace the offending 4bit data being
analyzed. This brightness scale ensures
that such error correction would be eye
pleasing and smooth as much as
possible. If the stock Commodore color
scale of 0 to 15 were used, such error
correction would not conform to a
eye-pleasing brightness scale, but to a
color scale that was designed by
Commodore back in 1982 and would
yield poor results and those infamous
color clashes.

Second phase ---> Error Correction
GoDot then attempts to display the

4bit data directly to the multicolor
screen on your Commodore. On this
second pass through the 4bit file,
GoDot analyzes each 4bit data it goes

Computers do not know
any colors and only

understand mathematics.
Mathematics is used as a

very effective tool in
describing the unknown

in our modern world.

Page 5Commodore Currents The GoDot Report

Third phase ---> Renderizing
The multicolor screen has been

changed considerably and is now full
with pixel values making up its entire
onscreen bitmap. GoDot now enters the
renderizing phase and actually
substitutes the brightness values with
their respective Commodore colors,
using only the four brightness value
optimizations from the histogram table
for each and every individual 4x8 pixel
cell. There are 1000 such cells, and it
takes up some time in GoDot going
through all of them and finally
displaying the screen in its full
multicolor glory. With most 4bit files,
the final results that GoDot renderizes
onscreen is surprisingly very good.
Throughout the entire displaying
process, GoDot has never changed the
4bit data area one bit.

What a magic trick it is!
Can you repeat, please?

GoDot only has made such
mathematical gyrations with that
particular 4bit file to the multicolor
screen with surprisingly good results.
But, GoDot can increase its power by
changing its computational algorithms
on a different level. Let’s say that you
want to create a file that can be
displayed in the interlaced resolution
format of our Commodores. This
interlaced format is the one you can see
running in demos, Steve
Judd/Adrian Gonzales’ JPEG
viewer and my standalone NTSC
IFLIVIEWER. This interlaced format
has less restrictions than the stock
multicolor format and can display up to
136 colors in a 296x200 screen
resolution. GoDot cannot display this
enhanced video mode, so it needs to
save the renderizing results to a
standalone file.

GoDot applies the same
mathematical discipline to the same 4bit
datafile as it had done previously in
generating a multicolor screen, but

now for this interlaced resolution
format. This time, the optimization
phase of the 4bit file analysis is
expanded to include the increased color
selection and increased resolution.
Error correction still occurs and
pixel/color data is created to a
standalone file for later viewing by an
external application.

Let’s say that you want to create a
.GIF graphics file instead and use the
same 4bit datafile. GoDot applies the
same mathematical controls as used
previously. But a .GIF file can exceed
the color depth that is possible in a 4bit
file. GoDot merely makes an identical
copy of the 4bit data area into a .GIF
bitmap without any processing and
error correction. Then you can send

interface, some bugs fixed and the ability
to save a clipped area as a standalone
GIF.

Let’s say that you want to create an
.EPS file, which is shorthand for
Encapsulated PostScript. It is
similar to a geoPaint photoscrap, but for
the PostScript world. GoDot will run
through the same 4bit datafile, and create
an exact copy of the 4bit data into this
EPS bitmap without any processing and
error correction. Then you can use this
.EPS file on modern computing
platforms or right here on our
Commodore, by using the PostPrint
program created by Maurice Randall.
PostScript printing has never looked so
good!

GoDot enjoys a high degree of
device independence akin to PostScript.
All it does is to deal with graphical
images and manipulates them with sheer
mathematical precision. It can accept
input from a wide variety of sources like
.GIF’s, native Commodore graphical
formats, HandyScanner, etc. It can
then format output for .GIF’s, native
Commodore graphical formats, printers,
the World Wide Web, etc. GoDot’s
conceptual framework takes care of all
the differences in between those
disparate inputs and outputs of which the
Commodore can undertake.

this .GIF file to someone on a modern
computing platform. You can even set
up your webpages with .GIF graphics
processed by GoDot. The GIF saver
module has recently been greatly
improved, with a new user

If the stock Commodore
color scale of 0 to 15
were used, such error
correction would not

conform to an
eye-pleasing brightness

scale.

Page 6November 2003 (c) 2003 By Todd Elliott

Show me what GoDot *really* can do
While it is great to receive

graphical information from just about
any input and prepare such graphical
information for just about any output
on your Commodore, it’s what you do
in between which makes GoDot earn its
stripes as an image processor. GoDot
comes with a slew of processing
modules that affect the 4bit data area
ranging from dedicated error correction
modules to color/dithering modules to
modules that act like camera filters.
There is also a color controls section
which affects GoDot’s renderizer
routines, but not the 4bit data itself.

A Mini Walkthrough
Let’s say that you come across a

file on the Internet that you want to play
around with. For example, the Wave
Friendly logo looks like a nice
candidate. It’s in a .GIF file, so GoDot
doesn’t have a problem loading it in. I
use the Color Controls part of
GoDot to change the overall color of
the wave in the ’Wave Friendly’ logo to
a color more to my liking. This is just
one small part of the Color Controls as
it can also control the brightness of the
image, use dithering/patterns to come
up with eye-pleasing color
combinations and more.

Next, I turn my focus on the
ClipWorks module. The ’Wave
Friendly’ logo is small enough so that it
can be reproduced across the screen. I

execute the clipping module and clip
out the picture containing the logo,
similar to what a person would do in
geoPaint. Using a TileClip module, I
make a copy and paste it all over the
onscreen canvas, creating a tiled

specific textures, creating cartoonish
effects, etc.

I apply two effects, the first one
was called DeepPress and it created a
3-D impression. The second effect was
called LaPlacian and it created a neon
effect. I found this neon effect by
accident as I was simply trying out
modules and seeing what results I could
come up with.

I’m pretty much done with the
image processing of this ’Wave
Friendly’ logo and there are many
options at this point. I could save the file
as it is, a 4bit file. I’ll do that so I can
always refer to it again in creating
different kinds of output. Next, I could
save it as a .GIF file and post it on a
website. I could create an IFLI file and
view it in its full interlaced glory. I could
print it out. GoDot supports nearly every
printer imaginable, from the HP brands,
to Epson brands and the Canon
brands. Recently, in a marriage of two
technologies, GoDot supports the EPS
(Encapsulated PostScript) file format for
laser printer output. I elect to save the
file as an EPS file, and this file can be
pasted into a newsletter such as the
LUCKY Report as if it were a photo
scrap. Printer output is the best and
closest way in what GoDot provides for
image data material as no processing,
renderizing, or error correction takes
place.

Under the statistical microcosm
The main thrust of this seemingly

simple exercise in using GoDot shows
that I haven’t created anything from
scratch using just my mouse. I used the
Commodore 64 and its computing
power, even at 1MHz or 20MHz, and
processed such graphics in a purely
mathematical fashion. For example, in
the color controls section, GoDot
counted the colors and made the
appropriate changes in color selection
when I changed the palette. I used the
ClipWorks module and TileClip

effect of the ’Wave Friendly’ logo.
Andy Warhol would be so proud.

There is a lot more to the
ClipWorks module and its framework
of related modules like TileClip, as it
can allow a person to squeeze
(Squeeze2Clip) or stretch
(StretchClip) a graphic that is
contained within the clipping area. The
clipped area can be flipped
(UpsideDown) and mirrored
(Mirror). GoDot can also restrict
further image processing options to the
clipped region only. GoDot can allow
for masking, overlaying a clipped
image onto another image.

Next, I apply one of those
convolution modules contained within
GoDot. They’re similar to filters on a
camera which allows for some unique
effects. There are a lot of options here,
from blurring an area, applying

GoDot has made such
mathematical gyrations

with a 4bit file with
surprisingly good results.

GoDot can increase its
power by changing its

computational algorithms
on a different level.

Bottom Left: GoDot, a space age
explorer in the modern era of
image processing.

Left: GoDot plays handball with
a couple of graphics cards. This
is a clipart picture converted by
GoDot.

Page 7Commodore Currents The GoDot Report

module in creating a tiled effect of the
’Wave Friendly’ logo and the computer
used brute copying mechanisms to
copy a clipped area all over the screen.
Next, when I applied the DeepPress
and LaPlacian effects, GoDot used
statistical sampling algorithms in
achieving the desired look. Next, when
I saved it to an EPS file, GoDot made
an exact copy of the 4bit data area into a
bitmap and covered it with the relevant
EPS code.

Using GoDot does not make
Graphical Gurus out of you...
Admittedly, GoDot is a very

complex piece of software rich in
features and options. There are a lot of
modules that allow near unlimited
creativity on the part of the Commodore
user in processing graphics. However,
a person who uses GoDot does not
automatically become an artist or create
graphical masterpieces overnight.
GoDot provides a lot of tools at the
user’s disposal and the user needs
experience in trying them out, pushing
them to the limits and push the creative
envelope further. Moreover, with the
huge array of tools, it only makes sense
for the user to plan things out with
respect to image processing & creation.

Just use GoDot and plan ahead of
what you are trying to do with an
image. Are you designing graphics for
the World Wide Web? Are you
preparing graphics for printed output?
Are you just creating graphics for the
Commodore’s varied resolution
modes? Then try out various tools,
observe what happens, accumulate
invaluable experience. Be sure to have
the Undo function handy, so you can
reverse any mistakes you may make. If
you have the Go64! issues, check out
the GoDot tutorials written by the
author himself. Additionally, new
tutorials for GoDot now appear in the
UCUGA’s Commodore Digest
publication.

No more waiting for GoDot!
As stated earlier, CMD marketed

GoDot to the North American audience
and marketed it with an English printed
manual. Now, Arndt Dettke has
decided to release the entire GoDot

statistical and mathematical framework,
GoDot benefits tremendously from the
SuperCPU running at 20MHz.

ConGo, a Windows program,
can also manipulate 4bit files. For those
who dabble in LINUX, XnView can
also view 4bit files. The 4bit files can
even be viewed by my dotView utility
within the comforts of the Wheels
operating system. While GoDot does not
run under GEOS/Wheels, its user
interface is one of the best in the
business, being easy to operate and is
intuitive.

The linchpin becomes the Achilles Heel
Up to this point in the article, I have

been very positive towards GoDot and it
is very well deserved in its praise.
However, GoDot, despite its newness to
the North American audience, has begun
to show its age. GoDot is already ten
years old and its 4bit technology, the
very linchpin of its success is also its
biggest Achilles Heel. Consider for a
second when GoDot was introduced in
Germany ten years ago; The prevailing
graphical standard was only 16 colors
and the high-end computers sported 256
color displays. GoDot brought image
processing to the Commodore 64 in style
and in a current fashion. Now, in the
modern Internet age, 16 million color
graphics are the norm with a 24 bit color
depth. If I am to convert a JPEG picture
to a 4bit file under GoDot, I lose a
staggering amount of 20 bits worth of

program on his website for free
download. Granted, you would not be
able to acquire the English manual and
unless you have the Go64!/UCUGA
issues, you would also miss out on
some tutorials. Using GoDot would
require a learning curve in order to use
it effectively. But, hopefully for the
most of the North American audience,
using it regularly is the best way in
mastering GoDot. In addition to getting
GoDot from a users group like
LUCKI, you can download GoDot at:

http://members.aol.com/howtogodot/go
dnews.htm

GoDot, while it can run in stock
Commodore systems, is already
’CMD-Aware’ and works just fine in a
fully-tricked out Commodore setup.
Due to heavy emphasis on its

A building in
Amalienburg,
Germany.

All graphics
accompanying
this article
were
converted by
ConGo from
4bit files.

All GoDot does is to deal
with graphical images

and to manipulate them
with sheer mathematical

precision.

Page 8November 2003 (c) 2003 By Todd Elliott

color information in the conversion
process. No amount of error correction
and statistical sampling, no matter how
good, is enough to overcome such a
steep loss without the eye noticing.

I must stress that this really isn’t a
limitation of GoDot. GoDot is
optimally designed for the Commodore
64 and its inherent graphical
limitations. The 4bit graphical bitmap
format was designed to accommodate
the Commodore 64 as it can go up to
16 colors and the resulting bitmap
filesize is just 32K bytes. A complete
4bit image bitmap can fit easily within
the Commodore 64’s onboard memory
and still be flexible enough to be seen
easily onscreen either in multicolor
mode or high resolution mode.

generate. More importantly, the RGB
scheme is fully indexed and can be
manipulated with equal mathematical
force and sheer statistical precision.

Before the first line of code was
written for GoDot, the authors
collaborated and settled on the actual
RGB values which would make up all
the values on this 4bit brightness scale.
While GoDot would be optimally
designed for the Commodore 64, it still
retains its freedom by using actual RGB
values in its brightness scale. This
concept has made graphical conversions
between graphics in different platforms,
be they Windows, Amiga or the
Commodore itself all that much easier.
Keep in mind that the RGB values
underlying the brightness scale is used
for image conversions of various
graphical formats and is not intended as
the foundation behind GoDot in the
context of image processing.

GoDot’s brightness scale contains
sixteen preset colors, according to their
luminance. That is fine and is specially
optimized for image processing on the
Commodore 64. However, color
information is indexed according to their
brightness and it would be very nice to
have them indexed according to this
RGB spectrum where such color
information is split three ways. The
power of image processing is multiplied
exponentially when such information can
be interpreted and manipulated in three
different ways. Color information
interpreted in this manner also makes
printing and graphical conversions
between different computer platforms
more easier and more eye-pleasing.

A finer resolution...
Another problem is that GoDot

seemingly weds itself to the maximum
image size of 320x200 pixels, the very
same dimensions of the high resolution
screen of the VIC-II chip in the
Commodore 64. While a 320x200
graphical bitmap is large enough

The color beast becomes
a three-headed chimera

Moreover, modern computers and
related peripherals such as monitors
and printers split up color information
primarily in three ways. Computers do
not know colors, but computers can
use the physical rules of nature in
creating colors. An artist can mix colors
and create new colors in doing so.
Color charts have been produced and
made specially for artists in mixing
colors as to achieve the desired color.
The same rules apply to computer
generated colors; Computers can mix
the Red, Green and Blue beams in a
monitor to come up with the desired
color. (Modern color printers use a
similar scheme called CYMK.) This
scheme is called RGB and carries with
it a broad spectrum of colors that a
computer can understand and

Used Palette Controls to set
desired colors.
Then used the TileClip module
below.

Applied the DeepPress module.
(below)

Applied the LaPlacian module
for a neon effect. (below)

The main thrust of this
seemingly simple

exercise in using GoDot
shows that I haven’t

created anything from
scratch.

Page 9Commodore Currents The GoDot Report

during the Commodore 64’s heyday,
modern images sport far greater sizes
than that. Again, a conversion of a
larger bitmap into the smaller confines
of a 320x200 image under GoDot will
lead to a loss in image quality, no
matter how good the underlying
mathematical contortions it underwent,
noticeable to the naked eye.

Images is in the eye of the beholder
Despite the graphical limitations of

the Commodore 64, GoDot continues
to surprise me with its color depth and
its image processing abilities
maximizing such color information.
For example, if you were to process
images as a Interlaced (IFLI) image
and save it as a EPS file, you would
seemingly print out 256 colors, not
sixteen! (The PostScript II printers
nowadays have finer dot resolution as
to fool the eye in displaying more
colors; only 136 colors are actually
used.) If you were to save this same
image as a PCX file for later viewing
on your modern computer, you would
see up to 136 colors, not sixteen.
Granted, its not 16 million colors, but
GoDot does a good job in maximizing
color information.

More amazingly, GoDot can
preprocess images and split up such
color information three ways, by using
the Scanntronik digitizer cartridge
and a RGB splitter. A person, Frank
Wagenknecht, in Germany, captured
such images within GoDot using this
cartridge and the RGB splitter. In doing
so, Frank created three standalone 4bit
files, one for each of the Red, Green
and Blue color intensities. Arndt then
combined the three 4bit files into a
single image using PaintShop Pro on
his modern computer in its full color
glory. Such combined images look
incredible and carry up to 4096 colors!
GoDot can load these ’12bit’ images
via the 4BitRGBd loader module w/
dithering. Not too bad for a image

processor running on a Commodore 64
which only has up to 16 luminance
values to play around with? :) Look for
more 4096 color images created by
GoDot at the following website:

http://members.aol.com/howtogod
ot/fgaler05.htm and .../fgaler06.htm

North American Commodore audience
undergoing a metamorphosis
In a play by Samuel Beckett,

Waiting for Godot, was about a bunch
of people waiting for a certain figure
named Godot. What was truly
remarkable about the play was that it
wasn’t focused on the Godot person,
but was upon the sheer dynamics and
change that this bunch of people

America via CMD, it introduced such a
paradigm shift from image creation to
image processing. We finally began to
use GoDot, but we were still
conceptually stuck in the ancient ages of
image creation and even demanded that
Arndt Dettke, GoDot’s author, create
mod.PixelEdit to facilitate our
creativity in creating such images.

More importantly, it changed my
viewpoint on image processing. No
longer did I view the computer as a
hostile thing, where I try to master the
mouse and/or the joystick in trying to
create that perfect screen graphic,
frustrating and bottling up my creativity.
I begin to look at the computer as my
best friend, one of the best tools I can
use in processing pre-existing images
and unlock my creativity in producing
images for the Commodore 64. I began
to see the true benefits of image
processing; that it marries the power of
computers in manipulating the sheer
volume of numbers which compose an
image bitmap and the power of the
human creative soul.

We are still waiting for GoDot, after all!
I also saw the limitations and

inherent weaknesses of what is
inarguably the first generation software
offering which promises to do image
processing for the Commodore 64.
Image processing software on modern

underwent while waiting for this
singular person. You could say that the
same thing happened to the North
American Commodore audience with
respect to the GoDot software. When
GoDot was introduced to North

GoDot is already 10
years old, and its 4bit
technology, the very

linchpin of its success is
also its biggest Achilles

Heel.

Page 10November 2003 (c) 2003 By Todd Elliott

computing platforms are now in their
tenth (or more) iteration and have far
more complex tools and features. I
thank Arndt Dettke and Wolfgang
Kling for their foresight and their
ambitious collaboration in bringing
forth the very concept of image
processing to our Commodore 8-bit
line of computers and for their
continued support and guidance in the
past ten years. I thank them for giving
me the tantalizing prospects of which
image processing can deliver and what
GoDot has delivered so far.

While GoDot has been introduced
ten years ago, I have sincere hopes that
it is not also the end of image
processing as we now know it for the
Commodore 8-bit line. In a sense,
while we are ’waiting’ for this next
generation software, we are now
figuring out GoDot and understanding
image processing concepts as the new
paradigm governing graphical bitmaps
on our Commodores. I suspect that
many of us Commodore users,
especially now that GoDot is freely
available for download, will undergo a
similar sort of metamorphosis
envisioned by Samuel Beckett in that
classic play.

Peering into the crystal ball...
I have glimpsed a little bit into the

inner workings of GoDot, with many
thanks to Arndt Dettke lending me
some of the source code for GoDot. I

am impressed with its conceptual
framework using mathematics and
statistics in processing image bitmaps.
More importantly, Arndt Dettke is still
working on GoDot. He is updating his
conceptual framework for image

(Continued from Page 1)
Laser Lovers
Wrong Is Write 81
UCUGA Commodore Digest
Code by Maurice Randall and Joe
Buckley, respectively. Promoted by
K. Dale Sidebottom. If you want the
finest in Commodore GEOS printing,
check it out!

www.luckyclub.net
ConGo
Created and maintained by Matthias
Matting.

www.editorix.org/congo/
XnView
Created and maintained by Pierre
Gougelet.

www.xnview.com
dotView
Created and maintained by Todd
Elliott
http://www.geocities.com/eyethian2000/
dotview.html
VICE
The ultimate C64/128 emulator.

viceteam.bei.t-online.de
Star Commander
Maintained by Joe Forster. A cool
interface for maintaining CBM/GEOS
files on modern platforms.

sta.c64.org
CC65 Programming Suite
Maintained by Ullrich Bassewitz.
GEOS Support by Maciej
Witkowiak.

www.cc65.org

manipulation by using the Commodore
REU.

With GoDot’s ability to use the
REU effectively, the user can work on
more than one image, use an image as a
mask, hold graphics clips, have a
powerful undo function, easily use
GoDot modules w/o disk access, and
much more. Arndt is now busily
working on making a JPEG loader
module for GoDot, and have an IFLI
viewer function as well. All of the latest
programming advances in GoDot are
made possible by the REU. Time will
tell if the SuperCPU, will too, receive
the GoDot treatment and have a native
version with even more powerful image
processing capabilities.

The future awaits us and in the
meantime, enjoy image processing on
your Commodore 64 using GoDot. Let
creativity guide your usage of GoDot.

Bottom Left:
The infamous
dancing baby
finds its way
onto the
Commodore
64/128.

Left: GoDot, a
half-asleep
giant, ready to
pounce on
stray pixels.

Before the first line of
GoDot was written, the
authors collaborated on

actual RGB values
comprising the 4bit

brightness scale, giving it
a degree of independence

in conversions.

Eyeth wears a catcher’s mask to ward off
color clashes.

