
Advantages of Inline Assembly
Because the inline assembler doesn’t require separate assembly and link steps, it is more convenient than a separate
assembler. Inline assembly code can use any C variable or function name that is in scope, so it is easy to integrate it
with your program’s C code. Because the assembly code can be mixed inline with C or C++ statements, it can do
tasks that are cumbersome or impossible in C or C++.
The uses of inline assembly include:

• Writing functions in assembly language.

• Spot-optimising speed-critical sections of code.

• Making direct hardware access for device drivers.

• Writing prolog and epilog code for “naked” calls.
Inline assembly is a special-purpose tool. If you plan to port an application to different machines, you’ ll probably
want to place machine-specific code in a separate module. Because the inline assembler doesn’t support all of
Microsoft Macro Assembler’s (MASM) macro and data directives, you may find it more convenient to use MASM
for such modules.

The __asm Keyword
The __asm keyword invokes the inline assembler and can appear wherever a C or C++ statement is legal. It cannot
appear by itself. It must be followed by an assembly instruction, a group of instructions enclosed in braces, or, at the
very least, an empty pair of braces. The term “__asm block” here refers to any instruction or group of instructions,
whether or not in braces.
The following code fragment is a simple __asm block enclosed in braces:
__asm
{
 mov al, 2
 mov dx, 0xD007
 out al, dx
}
Alternatively, you can put __asm in front of each assembly instruction:
__asm mov al, 2
__asm mov dx, 0xD007
__asm out al, dx
Because the __asm keyword is a statement separator, you can also put assembly instructions on the same line:
__asm mov al, 2 __asm mov dx, 0xD007 __asm out al, dx
All three examples generate the same code, but the first style (enclosing the __asm block in braces) has some
advantages. The braces clearly separate assembly code from C or C++ code and avoid needless repetition of the
__asm keyword. Braces can also prevent ambiguities. If you want to put a C or C++ statement on the same line as
an __asm block, you must enclose the block in braces. Without the braces, the compiler cannot tell where assembly
code stops and C or C++ statements begin. Finally, because the text in braces has the same format as ordinary
MASM text, you can easil y cut and paste text from existing MASM source files.
Unlike braces in C and C++, the braces enclosing an __asm block don’ t affect variable scope. You can also nest
__asm blocks; nesting does not affect variable scope.

Instruction Set for Inline Assembly
The inline assembler supports the full instruction set of the Intel 486 processor. Additional instructions supported by
the target processor can be created with the _emit Pseudoinstruction.

The _emit pseudoinstruction is similar to the DB directive of MASM. You use _emit to define a single immediate
byte at the current location in the current text segment. However, _emit can define only one byte at a time, and it
can only define bytes in the text segment. It uses the same syntax as the INT instruction.
The following fragment places the given bytes into the code:
#define randasm __asm _emit 0x4A __asm _emit 0x43 __asm _emit 0x4B
 .
 .
 .
__asm {
 randasm
 }

MASM Expressions in Inline Assembly
Inline assembly code can use any MASM expression, which is any combination of operands and operators that
evaluates to a single value or address.

Data Directives and Operators in Inline
Assembly
Although an __asm block can reference C or C++ data types and objects, it cannot define data objects with MASM
directives or operators. Specificall y, you cannot use the definition directives DB, DW, DD, DQ, DT, and DF, or the
operators DUP or THIS. MASM structures and records are also unavailable. The inline assembler doesn’t accept
the directives STRUC, RECORD, WIDTH, or MASK .

Although the inline assembler doesn’ t support most MASM directives, it does support EVEN and ALIGN. These
directives put NOP (no operation) instructions in the assembly code as needed to align labels to specific boundaries.
This makes instruction-fetch operations more eff icient for some processors.

MASM M acro Directives in Inline Assembly
The inline assembler is not a macro assembler. You cannot use MASM macro directives (MACRO, REPT, IRC,
IRP, and ENDM) or macro operators (<>, !, & , % , and .TYPE). An __asm block can use C preprocessor
directives, however.

Segment References in Inline Assembly
You must refer to segments by register rather than by name (the segment name _TEXT is invalid, for instance).
Segment overrides must use the register expli citly, as in ES:[BX].

Type and Var iable Sizes in Inline Assembly
The LENGTH, SIZE, and TYPE operators have a limited meaning in inline assembly. They cannot be used at all
with the DUP operator (because you cannot define data with MASM directives or operators). But you can use them
to find the size of C or C++ variables or types:

• The LENGTH operator can return the number of elements in an array. It returns the value 1 for non-array
variables.

• The SIZE operator can return the size of a C or C++ variable. A variable’s size is the product of its
LENGTH and TYPE.

• The TYPE operator can return the size of a C or C++ type or variable. If the variable is an array, TYPE
returns the size of a single element of the array.

For example, if your program has an 8-element int array,
int arr[8];
the following C and assembly expressions yield the size of arr and its elements.

__asm C Size
LENGTH arr sizeof(arr)/sizeof(arr[0]) 8
SIZE arr sizeof(arr) 16
TYPE arr sizeof(arr[0]) 2

Assembly-Language Comments
Instructions in an __asm block can use assembly-language comments:
__asm mov ax, offset buff ; Load address of buff
Because C macros expand into a single logical l ine, avoid using assembly-language comments in macros.
(SeeDefining __asm Blocks as C Macros.) An __asm block can also contain C-style comments; for more
information, see Using C or C++ in __asm Blocks.

Debugging and L istings for Inline Assembly
Programs containing inline assembly code can be debugged with a source-level debugger if you compile with the /Zi
option.
Within the debugger, you can set breakpoints on both C or C++ and assembly-language lines. If you enable mixed
assembly and source mode, you can display both the source and disassembled form of the assembly code.
Note that putting multiple assembly instructions or source language statements on one line can hamper debugging.
In source mode, you can use the debugger to set breakpoints on a single line but not on individual statements on the
same line. The same principle applies to an __asm block defined as a C macro, which expands to a single logical
line.
If you create a mixed source and assembly li sting with the /FAs compiler option, the li sting contains both the source
and assembly forms of each assembly-language line. Macros are not expanded in li stings, but they are expanded
during compilation

Intel' s MM X Instruction Set
The Visual C++ compiler allows you to use Intel's MMX (multimedia extension) instruction set in the inline
assembler. The MMX instructions are also supported by the debugger disassembly. The MMX registers are not
supported in the debugger register window. The compiler generates a warning message if the function contains
MMX instructions, but does not have an EMMS instruction to empty the multimedia state. For more information,
see the Intel Web site.

Using C or C++ in __asm Blocks
Because inline assembly instructions can be mixed with C or C++ statements, they can refer to C or C++ variables
by name and use many other elements of those languages.
An __asm block can use the following language elements:

• Symbols, including labels and variable and function names

• Constants, including symbolic constants and enum members

• Macros and preprocessor directives

• Comments (both /* * / and //)

• Type names (wherever a MASM type would be legal)

• typedef names, generall y used with operators such as PTR and TYPE or to specify structure or union
members

Within an __asm block, you can specify integer constants with either C notation or assembler radix notation (0x100
and 100h are equivalent, for example). This allows you to define (using #define) a constant in C and then use it in
both C or C++ and assembly portions of the program. You can also specify constants in octal by preceding them
with a 0. For example, 0777 specifies an octal constant.

Using Operators in __asm Blocks
An __asm block cannot use C or C++ specific operators, such as the << operator. However, operators shared by C
and MASM, such as the * operator, are interpreted as assembly-language operators. For instance, outside an __asm
block, square brackets ([]) are interpreted as enclosing array subscripts, which C automatically scales to the size of
an element in the array. Inside an __asm block, they are seen as the MASM index operator, which yields an
unscaled byte offset from any data object or label (not just an array). The following code il lustrates the difference:
int array[10];

__asm mov array[6], bx ; Store BX at array+6 (not scaled)

array[6] = 0; /* Store 0 at array+12 (scaled) */
The first reference to arra y is not scaled, but the second is. Note that you can use the TYPE operator to achieve
scaling based on a constant. For example, the following statements are equivalent:
__asm mov array[6 * TYPE int], 0 ; Store 0 at array + 12

array[6] = 0; /* Store 0 at array + 12 */

Using C or C++ Symbols in __asm Blocks
An __asm block can refer to any C or C++ symbol in scope where the block appears. (C and C++ symbols are
variable names, function names, and labels; that is, names that aren’t symbolic constants or enum members. You
cannot call C++ member functions.)
A few restrictions apply to the use of C and C++ symbols:

• Each assembly-language statement can contain only one C or C++ symbol. Multiple symbols can appear in
the same assembly instruction only with LENGTH, TYPE, and SIZE expressions.

• Functions referenced in an __asm block must be declared (prototyped) earlier in the program. Otherwise,
the compiler cannot distinguish between function names and labels in the __asm block.

• An __asm block cannot use any C or C++ symbols with the same spelling as MASM reserved words
(regardless of case). MASM reserved words include instruction names such as PUSH and register names
such as SI.

• Structure and union tags are not recognized in __asm blocks.

Accessing C or C++ Data in __asm Blocks
A great convenience of inline assembly is the ability to refer to C or C++ variables by name. An __asm block can
refer to any symbols, including variable names, that are in scope where the block appears. For instance, if the C
variable var is in scope, the instruction
__asm mov eax, var
stores the value of var in EAX.
If a class, structure, or union member has a unique name, an __asm block can refer to it using only the member
name, without specifying the variable or typedef name before the period (.) operator. If the member name is not
unique, however, you must place a variable or typedef name immediately before the period operator. For example,
the following structure types share same_name as their member name:
struct first_type
{
 char *weasel;
 int same_name;
};

struct second_type
{
 int wonton;
 long same_name;
};
If you declare variables with the types
struct first_type hal;
struct second_type oat;
all references to the member same_name must use the variable name because same_name is not unique. But the
member weasel has a unique name, so you can refer to it using only its member name:
__asm
{
 mov ebx, OFFSET hal
 mov ecx, [ebx]hal.same_name ; Must use 'hal'
 mov esi, [ebx].weasel ; Can omit 'hal'
}
Note that omitting the variable name is merely a coding convenience. The same assembly instructions are generated
whether or not the variable name is present.
You can access data members in C++ without regard to access restrictions. However, you cannot call member
functions.

Writing Functions with Inline Assembly
If you write a function with inline assembly code, it’s easy to pass arguments to the function and return a value from
it. The following examples compare a function first written for a separate assembler and then rewritten for the inline
assembler. The function, called power2 , receives two parameters, multiplying the first parameter by 2 to the power
of the second parameter. Written for a separate assembler, the function might look li ke this:
; POWER.ASM
; Compute the power of an integer
;
 PUBLIC _power2
_TEXT SEGMENT WORD PUBLIC 'CODE'
_power2 PROC

 push ebp ; Save EBP
 mov ebp, esp ; Move ESP into EBP so we can refer
 ; to arguments on the stack

 mov eax, [ebp+4] ; Get first argument
 mov ecx, [ebp+6] ; Get second argument
 shl eax, cl ; EAX = EAX * (2 ^ CL)
 pop ebp ; Restore EBP
 ret ; Return with sum in EAX

_power2 ENDP
_TEXT ENDS
 END
Since it’s written for a separate assembler, the function requires a separate source file and assembly and link steps. C
and C++ function arguments are usually passed on the stack, so this version of the power2 function accesses its
arguments by their positions on the stack. (Note that the MODEL directive, available in MASM and some other
assemblers, also allows you to access stack arguments and local stack variables by name.)
The POWER2.C program writes the power 2 function with inline assembly code:
/* POWER2.C */
#include <stdio.h>

int power2(int num, int power);

void main(void)
{
 printf("3 times 2 to the power of 5 is % d\n", \
 power2(3, 5));
}
int power2(int num, int power)
{
 __asm
 {
 mov eax, num ; Get first argument
 mov ecx, power ; Get second argument
 shl eax, cl ; EAX = EAX * (2 to the power of CL)
 }
 /* Return with result in EAX */
}
The inline version of the power 2 function refers to its arguments by name and appears in the same source file as
the rest of the program. This version also requires fewer assembly instructions.
Because the inline version of power2 doesn’ t execute a C return statement, it causes a harmless warning if you
compile at warning level 2 or higher. The function does return a value, but the compiler cannot tell that in the
absence of a return statement. You can use #pragma warning to disable the generation of this warning.

Using and Preserving Registers in Inline
Assembly
In general, you should not assume that a register wil l have a given value when an __asm block begins. Register
values are not guaranteed to be preserved across separate __asm blocks. If you end a block of inline code and begin
another, you cannot rely on the registers in the second block to retain their values from the first block. An __asm
block inherits whatever register values result from the normal flow of control.
If you use the __fastcall calling convention, the compiler passes function arguments in registers instead of on the
stack. This can create problems in functions with __asm blocks because a function has no way to tell which
parameter is in which register. If the function happens to receive a parameter in EAX and immediately stores
something else in EAX, the original parameter is lost. In addition, you must preserve the ECX register in any
function declared with __fastcall.

To avoid such register confli cts, don’ t use the __fastcall convention for functions that contain an __asm block. If
you specify the __fastcall convention globally with the /Gr compiler option, declare every function containing an
__asm block with __cdecl or __stdcall. (The __cdecl attribute tell s the compiler to use the C calling convention for
that function.) If you are not compil ing with /Gr, avoid declaring the function with the __fastcall attribute.
When using __asm to write assembly language in C/C++ functions, you don't need to preserve the EAX, EBX,
ECX, EDX, ESI, or EDI registers. For example, in the POWER2.C example in Writing Functions with Inline
Assembly, the power 2 function doesn't preserve the value in the EAX register. However, using these registers wil l
affect code quality because the register allocator cannot use them to store values across __asm blocks. In addition,
by using EBX, ESI or EDI in inline assembly code, you force the compiler to save and restore those registers in the
function prologue and epilogue.
You should preserve other registers you use (such as DS, SS, SP, BP, and flags registers) for the scope of the __asm
block. You should preserve the ESP and EBP registers unless you have some reason to change them (to switch
stacks, for example). Also see Optimizing Inline Assembly.
Note If your inline assembly code changes the direction flag using the STD or CLD instructions, you must restore
the flag to its original value.

Jumping to Labels in Inline Assembly
Like an ordinary C or C++ label, a label in an __asm block has scope throughout the function in which it is defined
(not only in the block). Both assembly instructions and goto statements can jump to labels inside or outside the
__asm block.
Labels defined in __asm blocks are not case sensitive; both goto statements and assembly instructions can refer to
those labels without regard to case. C and C++ labels are case sensitive only when used by goto statements.
Assembly instructions can jump to a C or C++ label without regard to case.
The following code shows all the permutations:
void func(void)
{
 goto C_Dest; /* Legal: correct case */
 goto c_dest; /* Error: incorrect case */

 goto A_Dest; /* Legal: correct case */
 goto a_dest; /* Legal: incorrect case */

 __asm
 {
 jmp C_Dest ; Legal: correct case
 jmp c_dest ; Legal: incorrect case

 jmp A_Dest ; Legal: correct case
 jmp a_dest ; Legal: incorrect case

 a_dest: ; __asm label
 }

 C_Dest: /* C label */
 return;
}
Don’ t use C library function names as labels in __asm blocks. For instance, you might be tempted to use exit as a
label, as follows:
; BAD TECHNIQUE: using library function name as label
jne exit
 .
 .
 .
exit:

 ; More __asm code follows
Because exit is the name of a C library function, this code might cause a jump to the exit function instead of to the
desired location.
As in MASM programs, the dollar symbol ($) serves as the current location counter. It is a label for the instruction
currently being assembled. In __asm blocks, its main use is to make long conditional jumps:
jne $+5 ; next instruction is 5 bytes long
jmp farlabel
; $+5
 .
 .
 .
farlabel:

Calli ng C Functions in Inline Assembly
An __asm block can call C functions, including C library routines. The following example call s the pr intf library
routine:
#include <stdio.h>

char format[] = "%s %s\n";
char hello[] = "Hello";
char world[] = "world";
void main(void)
{
 __asm
 {
 mov eax, offset world
 push eax
 mov eax, offset hello
 push eax
 mov eax, offset format
 push eax
 call printf
 //clean up the stack so that main can exit cleanly
 //use the unused register ebx to do the cleanup
 pop ebx
 pop ebx
 pop ebx
 }
}
Because function arguments are passed on the stack, you simply push the needed arguments—string pointers, in the
previous example—before calling the function. The arguments are pushed in reverse order, so they come off the
stack in the desired order. To emulate the C statement
printf(format, hello, world);
the example pushes pointers to world , hell o, and format , in that order, and then calls printf .

Calli ng C++ Functions in Inline Assembly
An __asm block can call only global C++ functions that are not overloaded. If you call an overloaded global C++
function or a C++ member function, the compiler issues an error.
You can also call any functions declared with extern " C" linkage. This allows an __asm block within a C++
program to call the C library functions, because all the standard header files declare the library functions to have
extern " C" linkage.

Defining __asm Blocks as C Macros
C macros offer a convenient way to insert assembly code into your source code, but they demand extra care because
a macro expands into a single logical li ne. To create trouble-free macros, follow these rules:

• Enclose the __asm block in braces.

• Put the __asm keyword in front of each assembly instruction.

• Use old-style C comments (/* comment * /) instead of assembly-style comments (; comment) or
single-line C comments (// comment).

To illustrate, the following example defines a simple macro:
#define PORTIO __asm \
/* Port output */ \
{ \
 __asm mov al, 2 \
 __asm mov dx, 0xD007 \
 __asm out al, dx \
}
At first glance, the last three __asm keywords seem superfluous. They are needed, however, because the macro
expands into a single line:
__asm /* Port output */ { __asm mov al, 2 __asm mov dx, 0xD007 __asm out al,
dx }
The third and fourth __asm keywords are needed as statement separators. The only statement separators recognized
in __asm blocks are the newline character and __asm keyword. Because a block defined as a macro is one logical
line, you must separate each instruction with __asm.
The braces are essential as well . If you omit them, the compiler can be confused by C or C++ statements on the
same line to the right of the macro invocation. Without the closing brace, the compiler cannot tell where assembly
code stops, and it sees C or C++ statements after the __asm block as assembly instructions.
Assembly-style comments that start with a semicolon (;) continue to the end of the line. This causes problems in
macros because the compiler ignores everything after the comment, all the way to the end of the logical line. The
same is true of single-line C or C++ comments (// comment). To prevent errors, use old-style C comments (/*
comment */) in __asm blocks defined as macros.
An __asm block written as a C macro can take arguments. Unlike an ordinary C macro, however, an __asm macro
cannot return a value. So you cannot use such macros in C or C++ expressions.
Be careful not to invoke macros of this type indiscriminately. For instance, invoking an assembly-language macro in
a function declared with the __fastcall convention may cause unexpected results. (See Using and Preserving
Registers in Inline Assembly.)

Optimizing Inline Assembly
The presence of an __asm block in a function affects optimization in several ways. First, the compiler doesn’ t try to
optimize the __asm block itself. What you write in assembly language is exactly what you get. Second, the presence
of an __asm block affects register variable storage. The compiler avoids enregistering variables across an __asm
block if the register’s contents would be changed by the __asm block. Finally, some other function-wide
optimizations wil l be affected by the inclusion of assembly language in a function

