
File size optimisation master class

Marcus Winter aka muhmac/freestyle
http://20to4.net/

Ideas and Techniques
for smaller Executables

Agenda

Compression Basics

The 20to4 Executable Compressor

The SuShI Introsystem

Compression Basics

 Entropy

 Describes disorder in a file

 Calculated based on probability of symbols

 Smaller entropy means less symbols

 Compression increases entropy

 See the following pages

 http://datacompression.info/

 http://www.maximumcompression.com/

Compression Algorithms
Pattern Matching

 Simple Example

 Low memory requirements

 Decompressor can be kept small

 Normally, compression is slower than decompression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Input D R D O B B S _ D R D O B B S _ D R _ D O
Literal D R [] O B [] S _ [- - - - - - - -] [] []
Match -2 -1 -8 -3 -9

1 1 10 1 2

Encoding: Prefixes
0 – literal
10 – 1 byte match, 4 bit for offset
11 – longer match, 4 bit offset, 4 bit length

Original: 21*8 = 168 bits
Encoded: 6*9+3*6+2*10 = 92 bits

Compression Algorithms
Huffman Encoding

 Example

 Tree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Input D R D O B B S _ D R D O B B S _ D R _ D O
Code 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1
1 0 1 0 1 0 1 0 1 0 0

DB_ROS 21

Root Node

Char Freq

Node

_ 3

0

B 4

1

D 6

0

R 3

1

O 3

0

S 2

1

DB 10

0

_ROS 11

1

OS 5

1

_R 6

0

Original: 21*8 = 168 bits
Encoded: 10*2+11*3 = 53 bits

D
B
_

D
B
_
R

D R D O
S

B
_
R
O
S

O
S

B
_
R
O
S

Compression Algorithms
Range Coding

 Example

 Low memory requirements

 Fast decompression

 Limited accuracy is a problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Symbol Probability Cumulative

Input D R D O B B S _ D R D O B B S _ D R _ D O D 0,29 0

Code 0 0,
18

0,
18

0,
19 B 0,19 0,29

_ 0,14 0,48

R 0,14 0,62

O 0,14 0,76

S 0,1 0,9

Recursive embedding of probability intervals
Resulting value identifies input stream

Simplicity and Reuse

 Simple code

 Code compresses only 2:1 (usually even less)

 Data can be layed out for optimal compression performance

 Data driven architectures usually perform better

 Virtual machine is a good choice

 Reuse of code is critical

 Less code in the executable

 Good side effect: less errors

 Lots of the subroutines for sound and graphics are quite similar

 Example: Interpolators can be shared easily

20to4
Concept

 Improvement of compression of 4k intros

 Decompressor size is critical

 Target OS is Windows

 Optimisation of PE File structure

 Headers

 Sections

 Imports

 Microsoft CAB compression

20to4
PE Files

 Concept

 Image of memory block

 Unused parts are left out

 Directory

 Offsets and sizes of
imports and exports

 Section headers

 Relative location and size in memory

 Location and size in file

 Protection information

 Image pages

 Contain actual data

 Must be aligned

PE File Layout
DOS Header

Offset to PE Header
DOS Stub & Relocations

PE Header
Optional Header

Directory

Section Headers

Image Pages

20to4
PE File Optimisiation

 Header cleanup

 Most of the values in the headers are not checked

 Headers can be interleaved

 Section realignment

 Removal of trailing zeroes

 Sections are initialised to zero up to their virtual size

 Merging sections

 Sections can be combined into a single section

 Protection suffers, but file usually compresses better

 Reorganisation of imports

 Import by name

 Import by number

 Hashed import

20to4
CAB Files

 Compression

 MSZIP – bad performance on small files

 LZX – better than apack or upx

— Pattern Matching, Lazy Matching

— Matches are encoded using Huffman Encoding

 Decompression

 Batch File

— Output file will be a batch

— Decompression code resides in the file name field

 Exe file

— Functions from cabinet.dll

— Interleaved headers

— Decompression code resides between headers and first section

20to4
Decompressor

 Batch file

 PE exe decompressor

 set t=%temp%\x.exe

 del %t%

 extrac32 %0 %t%

 %t%

 del %t%

 exit

SuShI Introsystem
Basic Ideas

 Virtual machine

 Supershape object generator

 OpenGL texture generator

 Modular softsynth

 Scripting engine

 Optimising script compiler

 Tools for ease of scripting

SuShI Introsystem
Virtual Machine

 Organisation

 4096 float/int registers

 Separate code and data streams

 Instructions work on register ranges, only base register is specified

 Some instructions require buffers (eg. reverb effect)

 Instruction selected from code stream

 Instruction reads from the data stream and advances the data
pointer

 Instructions

 Specification of geometry, materials, lighting and camera setup

 Generating of geometry and textures

 Interpolators, Oscillators

 Data movement

SuShI Introsystem
Scripting Engine

 XML format

 Easy and reliable parsing

 Flexible and easily extendable

 Versioning is no problem

 Scripting

 Scripts are generated by tools

 Scripting by hand should be possible
(easy reordering and optimising)

 Interpolation instructions are main means of scripting

 Oscillators from soundcode can be used too

SuShI Introsystem
Example Script

SuShI Introsystem
Script Compiler

 Features

 Pattern analysis

 Instruction independence check

 Data/State flow analysis

 Scriptcode reordering

 Removal of unnecessary statements

 Facts

 15000 lines of code

 Optimisations lead to compression ratios up to 10:1

 Without them compression ratio was about 4:1

SuShI Introsystem
Tools

 Tools as plugins for standard software

 Artists do not need to learn a new interface

 Additional functionality can be embedded in a „subinterface“

 Modelling

 Cinema 4D object plugins

 Standard materials

 Texturing

 Custom texture generator

 Embedded in Cinema 4D as a shader

 Sound

 Custom software synth

 Any MIDI sequencer can be used

 Sound can be „programmed“ directly in the synth

SuShI Introsystem
Object Generator

SuShI Introsystem
Texture Generator

SuShI Introsystem
Software Synth

End

 Have a nice day!

